Herein, we report metal-organic ionic frameworks (MOIFs; an ionic product of an anionic complex and an organic cationic head group) for the adsorption of toxic organic pollutants and as a self-rotatory motor. MOIFs were synthesized via the ion-exchange mechanism in water (without use of any toxic organic solvent) using Na[Fe(CN)NO] and [C HN(CH)] and characterized through small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques. Thermal gravimetric (TGA/DTA) and differential scanning calorimetric (DSC) studies of MOIFs have informed their activation energy, enthalpies of crystallization/melting, and specific heat capacity (SHC), which have also been correlated with their structural properties. MOIFs have shown the adsorption of toxic pollutants determined through the UV-visible method, two parameter isotherms, thermal kinetics, and activation parameters. The interaction between the adsorbate and adsorbent has been estimated with the equilibrium isotherm, which is characteristic of the adsorption system. Apart from this, we also found MOIF, especially dodecyltrimethyl ammonium cation + nitroprusside anion (Dt-NP), to be an autonomous motor, where it could develop a surface tension gradient at the water interface, and this gradient produced mechanical motion, as demonstrated with boat experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807800 | PMC |
http://dx.doi.org/10.1021/acsomega.0c04896 | DOI Listing |
ACS Omega
January 2021
SMMPISR, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India.
Herein, we report metal-organic ionic frameworks (MOIFs; an ionic product of an anionic complex and an organic cationic head group) for the adsorption of toxic organic pollutants and as a self-rotatory motor. MOIFs were synthesized via the ion-exchange mechanism in water (without use of any toxic organic solvent) using Na[Fe(CN)NO] and [C HN(CH)] and characterized through small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques. Thermal gravimetric (TGA/DTA) and differential scanning calorimetric (DSC) studies of MOIFs have informed their activation energy, enthalpies of crystallization/melting, and specific heat capacity (SHC), which have also been correlated with their structural properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!