Predicting Air Superficial Velocity of Two-Phase Reactors Using ANFIS and CFD.

ACS Omega

Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia.

Published: January 2021

In predicting the turbulence property of gas (bubble) flow in the domain of continuous fluid and liquid, the integration of machine learning and computational fluid dynamics (CFD) methods reduces the overall computational time. This combination enables us to see the effective input parameters in the engineering process and the impact of operating conditions on final outputs, such as gas hold-up, heat and mass transfer, and the flow regime (uniform bubble distribution or nonuniform bubble properties). This paper uses the combination of machine learning and single-size calculation of the Eulerian method to estimate the gas flow distribution in the continuous liquid fluid. To present the machine-learning method besides the Eulerian method, an adaptive neuro-fuzzy inference system (ANFIS) is used to train the CFD finding and then estimate the flow based on the machine-learning method. The gas velocity and turbulent eddy dissipation rate are trained throughout the bubble column reactor (BCR) for each CFD node, and the artificial BCR is predicted by the ANFIS method. This smart reactor can represent the artificial CFD of the BCR, resulting in the reduction of expensive numerical simulations. The results showed that the number of inputs could significantly change this method's accuracy, representing the intelligence of method in the learning data set. Additionally, the membership function specifications can impact the accuracy, particularly, when the process is trained with different inputs. The turbulent eddy dissipation rate can also be predicted by the ANFIS method with a similar model pattern for air superficial gas velocity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807482PMC
http://dx.doi.org/10.1021/acsomega.0c04386DOI Listing

Publication Analysis

Top Keywords

air superficial
8
machine learning
8
eulerian method
8
machine-learning method
8
gas velocity
8
turbulent eddy
8
eddy dissipation
8
dissipation rate
8
predicted anfis
8
anfis method
8

Similar Publications

In the long and complex process of geological evolution, the rise of the Himalayan movement and the strong Quaternary glacial movement 400,000 years ago have shaped the highly distinctive travertine landform landscape of Huanglong, China. The overflow of karst water in the high travertine layer has formed magnificent waterfalls and wonderful karst caves as well as the world's largest open-air travertine beaches and pools. The unique travertine landscape has entered the public's vision.

View Article and Find Full Text PDF

Objectives: We have previously shown that ultrasound-guided repair results in an accurate anchor placement and restores ankle joint stability using cadaveric models. The objective is to assess the safety and clinical outcomes of ultrasound-guided ATFL repair with or without augmentation.

Methods: Forty-nine patients with chronic lateral ankle instability underwent ultrasound-guided ATFL repair with or without augmentation.

View Article and Find Full Text PDF

Purpose: In radiotherapy treatment planning systems, modelling of superficial dose may be aided by a body contour that is, by default, placed at the outermost air-tissue interface. Here we investigate the accuracy of superficial dose calculated using either the default body contour (DBC) or an extended body contour (EBC) compared to radiochromic film measurements made on a slab phantom and an anthropomorphic phantom.

Methods: Depth dose curves in the superficial region of the slab phantom were measured using stacked radiochromic films and irradiated using static beams delivered from varying incident angles.

View Article and Find Full Text PDF

Particulate matter and potentially toxic element content in urban ornamental plant species to assess pollutants trapping capacity.

J Environ Manage

January 2025

Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain. Electronic address:

Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations.

View Article and Find Full Text PDF

Roadmap for Borophene Gas Sensors.

ACS Sens

January 2025

Chimie des Interactions Plasma Surface group, Chemistry Department, Université de Mons, 7000 Mons, Belgium.

Borophene, a two-dimensional allotrope of boron, has emerged as a promising material for gas sensing because of its exceptional electronic properties and high surface reactivity. This review comprehensively overviews borophene synthesis methods, properties, and sensing applications. However, it is crucial to acknowledge the substantial gap between the abundance of theoretical literature and the limited experimental studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!