Background And Purpose: Independent dosimetry audits improve quality and safety of radiation therapy. This work reports on design and findings of a comprehensive 3D conformal radiotherapy (3D-CRT) Level III audit.
Materials And Methods: The audit was conducted as onsite audit using an anthropomorphic thorax phantom in an end-to-end test by the Australian Clinical Dosimetry Service (ACDS). Absolute dose point measurements were performed with Farmer-type ionization chambers. The audited treatment plans included open and half blocked fields, wedges and lung inhomogeneities. Audit results were determined as Pass Optimal Level (deviations within 3.3%), Pass Action Level (greater than 3.3% but within 5%) and Out of Tolerance (beyond 5%), as well as Reported Not Scored (RNS). The audit has been performed between July 2012 and January 2018 on 94 occasions, covering approximately 90% of all Australian facilities.
Results: The audit pass rate was 87% (53% optimal). Fifty recommendations were given, mainly related to planning system commissioning. Dose overestimation behind low density inhomogeneities by the analytical anisotropic algorithm (AAA) was identified across facilities and found to extend to beam setups which resemble a typical breast cancer treatment beam placement. RNS measurements inside lung showed a variation in the opposite direction: AAA under-dosed a target beyond lung and over-dosed the lung upstream and downstream of the target. Results also highlighted shortcomings of some superposition and convolution algorithms in modelling large angle wedges.
Conclusions: This audit showed that 3D-CRT dosimetry audits remain relevant and can identify fundamental global and local problems that also affect advanced treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807562 | PMC |
http://dx.doi.org/10.1016/j.phro.2018.03.006 | DOI Listing |
Radiol Phys Technol
January 2025
Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India.
This study evaluates the dosimetric impact of arc simulation angular resolution in VMAT-based Single Isocentre Multiple Target (SIMT) SRS, focusing on their dependence on target size, isocentre distance, number of arcs, and arc type. A phantom study analysed angular resolution (0.5°, 1°, 2°) effects on dosimetric accuracy for PTVs of 0.
View Article and Find Full Text PDFInt J Clin Oncol
January 2025
Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, Japan.
Background: The purpose of this study was to compare outcomes and adverse events between three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) in patients undergoing long-course neoadjuvant radiation therapy (NA-RT) for locally advanced rectal adenocarcinoma (LARC).
Methods: We retrospectively analyzed a total of 47 consecutive patients who received NA-RT for LARC between January 2011 and September 2022. Seven and 40 patients were diagnosed with clinical stages II and III, respectively.
Sci Rep
January 2025
Changde Hospital, Xiangya School of Medicine, Central South University, Renmin Road 818, Changde, 415000, China.
Adaptive radiotherapy (ART) provides greater benefits than intensity-modulated radiotherapy (IMRT) regarding dosimetric outcomes in patients with cervical cancer. To investigate the clinical benefits of ART, we have collected data from 115 cervical cancer patients who underwent radical radiotherapy at our institution. Fifty-nine patients received a single course of IMRT.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
Purpose: In this retrospective study, we aimed to evaluate the efficacy and incidence of radiation-induced brain necrosis (RBN) after volumetric modulated arc therapy-based stereotactic irradiation (VMAT-STI) for brain metastases.
Methods: In the 220 brain metastatic lesions included between January 2020 and June 2022, there were 1-9 concurrently treated lesions (median 1). A biologically effective dose (BED)10 of 80 Gy and a reduced BED10 of 50 Gy were prescribed to the gross tumor volume (GTV) and planning target volume (PTV) (PTV = GTV + 3 mm) margins, respectively.
Med Phys
January 2025
Department of Medical Physics, Nova Scotia Health, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
intra-arc binary collimation (iABC) is a novel treatment technique in which dynamic conformal arcs are periodically interrupted with binary collimation. It has demonstrated its utility through planning studies for the treatment of multiple metastases. However, the binary collimation approach is idealized in the planning system, while the treatment deliveries must adhere to the physical limitations of the mechanical systems involved [e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!