Background And Purpose: A commercial 2.5 MV beam has been clinically available for beam's-eye-view imaging in radiotherapy, offering improved contrast-to-noise ratio (CNR) compared to therapeutic beams, due to the softer spectrum. Previous research suggested that imaging performance could be improved using a low-Z diamond target to reduce the self-absorption of diagnostic energy photons. The aim of this study was to 1) investigate the feasibility of two 2.5 MV diamond target beamline configurations and 2) characterize the dosimetry and planar image quality of these novel low-Z beams.
Materials And Methods: The commercial 2.5 MV beam was modified by replacing the copper target with sintered diamond. Two beamlines were investigated: a carousel-mounted diamond target beamline and a 'conventional' beamline, with the diamond target in the target arm. Planar image quality was assessed in terms of spatial resolution and CNR.
Results: Due to image artifacts, image quality could not be assessed for the carousel-mounted low-Z target beam. The 'conventional' 2.5 MV low-Z beam quality was softer by 2.7% compared to the commercial imaging beam, resulting in improved CNR by factors of up to 1.3 and 1.7 in thin and thick phantoms, respectively. In regard to spatial resolution, the 'conventional' 2.5 MV low-Z beam slightly outperformed the commercial imaging beam.
Conclusion: With a simple modification to the 2.5 MV commercial beamline, we produced an improved energy spectrum for imaging. This 2.5 MV diamond target beam proved to be an advantageous alternative to the commercial target configuration, offering both superior resolution and CNR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807593 | PMC |
http://dx.doi.org/10.1016/j.phro.2020.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!