The outbreak of COVID-19 or coronavirus was first reported in 2019. It has widely and rapidly spread around the world. The detection of COVID-19 cases is one of the important factors to stop the epidemic, because the infected individuals must be quarantined. One reliable way to detect COVID-19 cases is using chest x-ray images, where signals of the infection are located in lung areas. We propose a solution to automatically classify COVID-19 cases in chest x-ray images. The ResNet-101 architecture is adopted as the main network with more than 44 millions parameters. The whole net is trained using the large size of x-ray images. The heatmap under the region of interest of segmented lung is constructed to visualize and emphasize signals of COVID-19 in each input x-ray image. Lungs are segmented using the pretrained U-Net. The confidence score of being COVID-19 is also calculated for each classification result. The proposed solution is evaluated based on COVID-19 and normal cases. It is also tested on unseen classes to validate a regularization of the constructed model. They include other normal cases where chest x-ray images are normal without any disease but with some small remarks, and other abnormal cases where chest x-ray images are abnormal with some other diseases containing remarks similar to COVID-19. The proposed method can achieve the sensitivity, specificity, and accuracy of 97%, 98%, and 98%, respectively. It can be concluded that the proposed solution can detect COVID-19 in a chest x-ray image. The heatmap and confidence score of the detection are also demonstrated, such that users or human experts can use them for a final diagnosis in practical usages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804292PMC
http://dx.doi.org/10.1117/1.JMI.8.S1.014001DOI Listing

Publication Analysis

Top Keywords

chest x-ray
24
x-ray images
24
cases chest
16
covid-19 cases
12
covid-19
10
x-ray
8
detect covid-19
8
x-ray image
8
confidence score
8
proposed solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!