Idiopathic infertility is the most common individual diagnosis in male infertility, representing nearly 44% of cases. Research studies dating over the last half-century consistently demonstrate a decline in male fertility that is incompletely explained by obesity, known genetic causes, or diet and lifestyle changes alone. Human exposures have changed dramatically over the same time course as this fertility decline. Synthetic chemicals surround us. Some are benevolent; however, many are known to cause disruption of the hypothalamic-pituitary-gonadal axis and impair spermatogenesis. More than 80,000 chemicals are registered with the United States National Toxicology Program and nearly 2,000 new chemicals are introduced each year. Many of these are known toxins, such as phthalates, polycyclic aromatic hydrocarbons, aromatic amines, and organophosphate esters, and have been banned or significantly restricted by other countries as they carry known carcinogenic effects and are reproductively toxic. In the United States, many of these chemicals are still permissible in exposure levels known to cause reproductive harm. This contrasts to other chemical regulatory legislature, such as the European Union's REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) regulations which are more comprehensive and restrictive. Quantification of these diverse exposures on an individual level has proven challenging, although forthcoming technologies may soon make this data available to consumers. Establishing causality and the proportion of idiopathic infertility attributable to environmental toxin exposures remains elusive, however, continued investigation, avoidance of exposure, and mitigation of risk is essential to our reproductive health. The aim of this review is to examine the literature linking changes in male fertility to some of the most common environmental exposures. Specifically, pesticides and herbicides such as dichlorodiphenyltrichloroethane (DDT), dibromochloropropane (DBCP), organophosphates and atrazine, endocrine disrupting compounds including plastic compounds phthalates and bisphenol A (BPA), heavy metals, natural gas/oil, non-ionizing radiation, air and noise pollution, lifestyle factors including diet, obesity, caffeine use, smoking, alcohol and drug use, as well as commonly prescribed medications will be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807371 | PMC |
http://dx.doi.org/10.21037/tau-20-685 | DOI Listing |
Cell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFNutrients
January 2025
ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies.
View Article and Find Full Text PDFPathogens
January 2025
Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
Studies in humans indicate that certain serovars are more pathogenic than others. Specifically, several studies concluded that serovars from the C-complex are more pathogenic than those from the B-complex, although there are reports that do not support this finding. To investigate these results in an animal model, the eight genitourinary serovars were tested in two strains of mice: C3H/HeN and BALB/c.
View Article and Find Full Text PDFInsects
December 2024
Department of Zoology, Faculty of Science, Eastern University, Chenkalady 30350, Sri Lanka.
The melon fly, , poses a severe threat to the country's agricultural productivity, particularly in the cultivation of cucurbitaceous crops. This study was conducted to determine the ideal irradiation dose to be used to set up a Sterile Insect Technique (SIT)-based strategy to control outbreaks in Sri Lanka. A colony was established and maintained under standard laboratory conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!