Recent biotechnological advances as potential intervention strategies against COVID-19.

3 Biotech

Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora Mexico.

Published: February 2021

The emerging SARS-CoV-2 viral disease (COVID-19) has caused a global health alert due to its high rate of infection and mortality in individuals with chronic cardiovascular comorbidities, in addition to generating complex clinical conditions. This has forced the scientific community to explore different strategies that allow combating this viral infection as well as treating life-threatening systemic effect of the infection on the individual. In this work, we have reviewed the most recent scientific evidence to provide a comprehensive panorama regarding the biotechnological strategies that have been proposed to combat this new viral infection. We have focused our analysis on vaccine production, nanotechnology applications, repurposing of know drugs for unrelated pathologies, and the search for bioactive molecules obtained from natural products. The goals include safely use as potential prophylactic or therapeutic treatments, based on in silico and in vivo studies, including clinical trials around the world for the correct and timely diagnosis of the infection. This review aims to highlight the development of new ideas that can decrease the time lines for research output and improve research quality while at the same time, keeping in mind the efficacy and safety aspects of these potential biotechnological strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796695PMC
http://dx.doi.org/10.1007/s13205-020-02619-1DOI Listing

Publication Analysis

Top Keywords

viral infection
8
biotechnological strategies
8
infection
5
biotechnological advances
4
advances potential
4
potential intervention
4
strategies
4
intervention strategies
4
strategies covid-19
4
covid-19 emerging
4

Similar Publications

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.

View Article and Find Full Text PDF

Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.

View Article and Find Full Text PDF

The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.

View Article and Find Full Text PDF

Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.

J Virol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!