Stability of electron-hole liquid in quantum wells.

J Phys Condens Matter

Kuban State University, 350040 Krasnodar, Russia.

Published: February 2021

Density functional theory is used to calculate the energy of electron-hole liquid and the equilibrium density of electron-hole pairs in quantum wells. Nonlinear Kohn-Sham equations for electrons and holes are solved numerically. The influence of the depth and width of the quantum well, the ratio of the hole and electron masses, and the spin splitting of the hole band on the properties of electron-hole liquid is studied. The critical temperature of electron-hole liquid in quantum wells is estimated. Good agreement between the calculations and experimental results is obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abdc90DOI Listing

Publication Analysis

Top Keywords

electron-hole liquid
16
quantum wells
12
liquid quantum
8
stability electron-hole
4
liquid
4
quantum
4
wells density
4
density functional
4
functional theory
4
theory calculate
4

Similar Publications

The rapid complexation of photogenerated electrons-holes with copper (Cu) greatly limits the large-scale application of cuprous oxide (CuO) as a photocatalyst. Therefore, using a hydrothermal method, a type Ⅱ heterojunction structure was constructed by modifying CuO with cerium (IV) oxide (CeO). The CeO/CuO heterojunction photocatalyst effectively increased the photogenerated electron density and reduced the surface transfer impedance.

View Article and Find Full Text PDF

Plasma-Liquid-Induced Synthesis of Scandium-Metalloporphyrin Frameworks for Boosted Sensing and Photosensitization.

Adv Mater

January 2025

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Inserting metal ions into the porphyrin ring is one of the primary strategies to enhance the properties of porphyrin-based metal-organic frameworks (MOFs). However, the straightforward, rapid, and energy-efficient synthesis of porphyrin-based MOFs with high metallization for the porphyrin ring remains challenging. Herein, a solution anode glow discharge (SAGD) microplasma is presented for the one-step synthesis of scandium-metalloporphyrin frameworks (ScMPFs).

View Article and Find Full Text PDF

Efficient visible-light-driven photocatalytic degradation of antibiotics in water by MXene-derived TiO-supported SiO/TiC composites: Optimisation, mechanism and toxicity evaluation.

Environ Pollut

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nanofluid Lab, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran. Electronic address:

Photocatalytic technology has emerged as a promising solution to global water contamination, mainly through the effective degradation of persistent pharmaceutical pollutants. However, a few challenges still exist in enhancing degradation efficiency, reducing the toxicity of by-products, and ensuring cost-effective scalability. This study focuses on Tetracycline Hydrochloride (TCH) as an index antibiotic pollutant to evaluate the performance of a novel MXene-derived TiO-supported SiO₂/TiC composite (SMXT) synthesized using ultrasonic and wet impregnation techniques.

View Article and Find Full Text PDF

We reported a novel strategy by the combination of two-step annealing treatment and ionic-liquid gating technology for effectively regulating the properties of g-C3N4, especially largely reducing the recombination rate of the electron-hole pairs, with evidenced by the remarkable reduction of photoluminescence (PL) intensity. Firstly, graphitic carbon nitrides with typical layered structure were obtained by annealing melamine with temperature above 500°C. Further annealing at 600°C with much longer time (from 2 hours to 12 hours) were found to effectively reduce the imperfections or defects, and thus the PL intensity (49% reduction).

View Article and Find Full Text PDF

Eliminating hazardous antibiotics from aquatic environments has become a major concern in recent years. Tetracycline (TC) compounds pose a challenge for the selective degradation of harmful chemical groups. In this study, we successfully designed carbon vacancies in a gCN@WC (GW) heterostructure for the effective removal of TC pollutants under visible light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!