Histone modifications and DNA methylation together govern promoter availability, thereby influencing gene expression. This study queries the unicellular chlorophyte, using a three step "epigenetic assay" design to phenotypically track the variegation of a randomly integrated Paromomycin resistance transgene(s) (). Based on its position of integration, the gene expression hinged on two epigenetic hallmarks: the spreading of heterochromatin, and the transmissible memory of epigenetic states across generations. Using a spot-dilution analysis, the loss of antibiotic resistance phenotype was scored from 0 to 4, four being maximally silenced. Appropriate construct designs were used to demonstrate that the -spread of heterochromatin could be interfered with a stronger euchromatic barrier ( promoter). When assayed for metal ion stress, a combination of Mn deficiency with excess Cu or Zn stress was shown to induce gene silencing in . Cu stress resulted in the accumulation of intracellular ROS, while Zn stress elevated the sensitivity to ROS. As proof of functional conservation, mammalian epigenetic drugs demonstrably interfered with stress-induced gene silencing. Finally, a selected group of transgenic clones responsive to HDACi sodium butyrate, when tested in a gradient plate format showed similarity in phenotype to the plant-derived compound cinnamic acid. This indicated a possible commonality in their mode of action, unlike curcumin which might have a different mechanism. Thus, using binned libraries, based on a common set of responses to known drugs, a cost-effective high-throughput screening strategy for epigenetically active compounds from plants or other sources is described.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2021.1876231DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
epigenetic drugs
8
stress-induced gene
8
gene expression
8
gene
5
potential screening
4
screening method
4
epigenetic
4
method epigenetic
4
drugs uncovering
4

Similar Publications

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors.

View Article and Find Full Text PDF

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!