Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Diagnosing blast-induced mild traumatic brain injury (mTBI) is difficult due to minimal imaging findings. This study aimed to establish a rat model of behavioral abnormality caused by blast-induced mTBI and detect new findings for therapeutic intervention.
Methods: We used a bench-top blast wave generator with the blast wave exiting through a 20-mm I.D. nozzle aimed at the focused target. The blast wave was directed at the head of male Wistar rats under general anesthesia positioned prone 2.5 cm below the nozzle. Peak shock wave pressure was 646.2 ± 70.3 kPa.
Results: After blast injury, mTBI rats did not show the findings of brain hemorrhage or contusion macroscopically and on hematoxylin-eosin-stained frozen sections but did show anorexia and weight loss in the early post-injury phase. Behavioral experiments revealed short-term memory impairment at 2 weeks and depression-like behavior at 2 and 6 weeks. Diffusion-weighted ex vivo MRI showed high-intensity areas in layers of the bilateral hippocampus. Immunohistochemical analysis revealed accumulation of reactive microglia and GFAP-positive astrocytes in the same region and loss of NeuN-positive neurons in the hippocampal pyramidal cell layer.
Conclusions: This model can reflect the pathophysiology of blast-induced mTBI and could potentially be used to develop therapeutic interventions in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02699052.2020.1861653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!