Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conjugation of various active targeting ligands to the surface of nanocarriers to realize specific recognition by the corresponding receptors localized on the membrane of the cancer cells has provided a powerful means toward enhanced cancer therapy. Folic acid (FA) is one of the most used targeting ligands due to the overexpressed FA receptors in many cancer cell lines. However, conjugation of hydrophobic FA to the surface of nanocarriers usually alters the hydrophilic/hydrophobic balance of the stabilized nanoparticles, leading to their thermodynamic instability and subsequent formation of aggregates, which apparently compromises the in vivo long circulation and minimized side effects of nanocarriers. The currently leading strategy to overcome this issue is to incorporate a protecting hydrophilic stealth that can be deshielded to expose the targeting ligand at the desired tumor site, which generally involves multistep chemical modifications, conjugations, and purifications. To develop a simple alternative toward FA-mediated enhanced anticancer drug delivery, a combination strategy of micelle complex and reducible conjugation was reported in this study. FA was first conjugated to the terminus of the hydrophilic block of a reduction-sensitive miktoarm star-shaped amphiphilic copolymer, PCL-SS-POEGMA, with the previously optimized star structure by click coupling via a reducible disulfide link. The resulting PCL-SS-POEGMA-SS-FA was further mixed with the parent PCL-SS-POEGMA to afford a micelle complex with both reducibly conjugated and relatively low amount of FA-targeting ligands toward excellent FA-mediated targeted drug delivery without compromised salt stability in vitro and in vivo. Therefore, the combined strategy developed herein provides a simple and powerful means to promote FA-mediated anticancer drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01920 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!