AI Article Synopsis

  • The study develops a composite material (HAP/κ-CA-MA-CAS/DOX) for use in osteosarcoma implants aimed at repairing bone, which is coated onto a titanium plate using an electrophoretic deposition method.
  • The new composite has shown excellent biocompatibility and osteoconductivity in lab tests with osteoblast-like cells, indicating its potential for promoting bone growth.
  • In vivo experiments on rats revealed significant bone regeneration within four weeks, suggesting that the composite could be an effective option for treating bone damage caused by osteosarcoma.

Article Abstract

Here, we focus on the fabrications of an osteosarcoma implant for bone repair via the development of a hydroxyapatite/κ-carrageenan-maleic anhydride/casein with doxorubicin (HAP/κ-CA-MA-CAS/DOX) composite-deposited titanium (Ti) plate. The HAP/κ-CA-MA-CAS/DOX material was coated on the Ti plate through the EPD method (electrophoretic deposition), applying direct current (DC) signals to deposit the composite on the surface of the Ti plate. The physicochemical and morphological possessions and biocompatibility in vitro of the prepared nanocomposite were examined to assess its prospective effectiveness for purposes of bone regeneration. Excellent biocompatibility and elevated osteoconductivity were confirmed using MG63 osteoblast-like cells. In vivo studies were performed at tibia sites in Wistar rats, and rapid bone regeneration was detected at four weeks in defective bone. Overall, the studies demonstrate that the HAP/κ-CA-MA-CAS/DOX composite enhances the biocompatible and cell-stimulating biointerface of Ti metallic implants. As such, HAP/κ-CA-MA-CAS/DOX implants are viable prospects for osteosarcoma-affected bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.9b01750DOI Listing

Publication Analysis

Top Keywords

bone regeneration
12
bone
6
vivo assessment
4
assessment hydroxyapatite/κ-carrageenan-maleic
4
hydroxyapatite/κ-carrageenan-maleic anhydride-casein/doxorubicin
4
anhydride-casein/doxorubicin composite-coated
4
composite-coated titanium
4
titanium bone
4
bone implant
4
implant focus
4

Similar Publications

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

A protein corona modulates the function of mineralization-competent matrix vesicles.

JBMR Plus

February 2025

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.

Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.

View Article and Find Full Text PDF

Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.

Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.

Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.

View Article and Find Full Text PDF

Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications.

J Mater Chem B

January 2025

State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.

View Article and Find Full Text PDF

Trends in Research of Odontogenic Keratocyst and Ameloblastoma.

J Dent Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!