To understand the natural silk spinning mechanism, synchrotron Fourier transform infrared (S-FTIR) microspectroscopy was employed in this study to monitor the conformation changes of silk protein in the silk gland of silkworm. The ultrahigh brightness of S-FTIR microspectroscopy allowed the imaging of the silk gland with micrometer-scale spatial resolution. Herein, tissue sections of a silk gland, including cross-section slices and longitudinal-section slices, were characterized. The results obtained clearly confirm that the conformation of the silk fibroin changes gradually along the silk gland from the tail to the spinneret. In the middle silk gland, silk fibroin mainly contains random coil/helix conformation. When it comes to the spinneret through the anterior silk gland, the content of β-sheet increases, but the content of random coil/helix instead reduces gradually. Further, the β-sheet distribution in the cross-section of the anterior silk gland was imaged using S-FTIR mapping technique. The results show that the structural distribution of the silk fibroin in cross-section is uniform without significant shell-core structure, which implies that the primary driving force to induce the conformation transition of silk fibroin from random coil/helix to β-sheet during the spinning process is elongational flow of silk fibroin in the silk gland and not the shear force between the silk fibroin and the lumen wall of silk gland. These direct pieces of evidence of silk fibroin structure in the silk gland would definitely promote a deeper understanding of the natural spinning process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01586 | DOI Listing |
Adv Mater
January 2025
Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia.
The remarkable toughness (>70 MJ m) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin.
View Article and Find Full Text PDFSTAR Protoc
January 2025
State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:
The silk glands (SGs) of silkworms specifically synthesize silk proteins, thus strongly influencing the yield and quality of silk. Here, we present a protocol for isolating SG nuclei from silkworms and obtaining high-quality tissue slices for spatial transcriptomics. We describe steps for rearing, dissecting, and nucleus isolation.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.
Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China. Electronic address:
Silkworm (Bombyx mori), belonging to the order Lepidoptera, is an important model insect for economic and scientific research. The capacity of the silkworm to secrete robust silk renders it a valuable economic resource, while its biological characteristics offer insights into a number of scientific disciplines. Despite the extensive research conducted to elucidate the mechanisms of silk secretion, many aspects remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China. Electronic address:
Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!