Titanium dioxide nanotube arrays are widely used in biomaterials due to their unique tubular structure and tunable biocompatibility. In the present study, titanium oxide nanotube arrays with different diameters were prepared on the titanium surface by anodization, followed by zinc doping using hydrothermal treatment to enhance the biocompatibility. Both the nanotube dimensions and zinc doping had obvious influences on the hydrophilicity, protein adsorption, blood compatibility, and endothelial cell behaviors of the titanium surface. The increase of the diameter and zinc doping can improve the hydrophilicity of the titanium surface. The increase of nanotube diameter could reduce the albumin adsorption while increasing the fibrinogen adsorption. However, zinc doping can simultaneously promote the adsorption of albumin and fibrinogen, and the effect was more obvious for albumin. Zinc doping can significantly improve the blood compatibility of the titanium oxide nanotubes because it cannot only increase the activity of cyclophosphate guanylate (cGMP) but also significantly reduce the platelets adhesion and hemolysis rate. Moreover, it was also found that both the smaller diameter and zinc doping nanotubes can enhance the endothelial cell adhesion and proliferation as well as up-regulate the expression of NO and VEGF. Therefore, the zinc doped titanium dioxide nanotube array can be used to simultaneously improve the blood compatibility and promote endothelialization of the titanium-based biomaterials and implants, such as intravascular stents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.0c00187 | DOI Listing |
J Colloid Interface Sci
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.
View Article and Find Full Text PDFSmall Methods
January 2025
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).
View Article and Find Full Text PDFSmall
January 2025
College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan.
Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.
View Article and Find Full Text PDFFuture Microbiol
January 2025
Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA.
Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!