Photopolymerization has been widely used for remote inducible hydrogelation with excellent spatiotemporal control. Recently, photothermal hydrogelation using near-infrared (NIR) light and photothermal agents has been developed showing remote hydrogelation ability with good biocompatibility and tissue penetration. However, the use of plasmonic nanoparticles (e.g., gold nanorods (GNRs)) still causes problems in reaction efficiency because hydrogelation is effective only when the wavelength of light is matched with the optical properties of the GNRs. Here, we demonstrated wavelength-independent photothermal hydrogelation using PEGylated graphene oxide (GO-PEG) that displays excellent heat generation from lights of a wide range of wavelengths. A sufficient increase in the temperature of the GO-PEG solution and the induction of thermal gelation of polyethylene diacrylate (PEGDA) by irradiation of various light sources (532, 785, and 980 nm) were demonstrated. Also, the GO-PEG-based photothermal hydrogelation of PEGDA was successfully employed for remote transdermal gel formation in vivo with 785 and 980 nm lasers. This wavelength-independent photothermal hydrogelation system will be useful for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.0c00161DOI Listing

Publication Analysis

Top Keywords

photothermal hydrogelation
16
graphene oxide
8
hydrogelation
8
light sources
8
wavelength-independent photothermal
8
785 980
8
photothermal
6
photothermal polymerization
4
polymerization graphene
4
oxide robust
4

Similar Publications

Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds.

J Nanobiotechnology

January 2025

Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.

Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.

View Article and Find Full Text PDF

An antimicrobial and adhesive conductive chitosan quaternary ammonium salt hydrogel dressing for combined electrical stimulation and photothermal treatment to promote wound healing.

Carbohydr Polym

March 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF was selected for subsequent in vitro and in vivo healing promotion studies.

View Article and Find Full Text PDF

To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.

View Article and Find Full Text PDF

A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers.

Polymers (Basel)

December 2024

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.

Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.

View Article and Find Full Text PDF

Local anesthetic (LA)-induced peripheral nerve block (PNB) is an important part of multimodal analgesia to reduce postoperative pain, accelerate postoperative recovery, and improve clinical prognosis. The duration of LA depends on anesthetics, and the repeated nerve positioning, puncture injection or indwelling catheter is often required to prolong the effect of PNB. In this study, the genipin, was used to crosslink gelatin-based hydrogel, and then co-loaded with indocyanine green (ICG) and lidocaine as an LA-controlled release system (ICG@Lido/Gel and ICG@Lido/gGel).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!