The Effect of Counterions in Hydrophobic Ion Pairs on Oral Bioavailability of Exenatide.

ACS Biomater Sci Eng

Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria.

Published: September 2020

The aim of this study was to evaluate the potential of -octadecyl sulfate (SOS) as a counterion for hydrophobic ion pairing (HIP) with exenatide-a potent glucagon-like peptide-1 (GLP-1) analogue in the treatment of diabetes mellitus-to improve its oral bioavailability. Exenatide was ion-paired with SOS and docusate (DOC) serving as the gold standard followed by the incorporation in a self-emulsifying drug delivery system (SEDDS) comprising Capmul MCM EP, Captex 355, Kolliphor RH40, and propylene glycol at a mass ratio of 41:15:40:4. The hydrophobicity of exenatide-SOS and exenatide-DOC was characterized by determining the butanol-water partition coefficient (log ). Droplet size and zeta potential of the ion pair-loaded SEDDS were characterized followed by intestinal membrane permeability determination on freshly excised rat intestines compared to exenatide solution. Furthermore, the oral bioavailability of exenatide-SOS- and exenatide-DOC-loaded SEDDS was also evaluated in vivo in healthy male Sprague-Dawley rats. Hydrophobic ion pairing increased the log of exenatide from -1.9 to 2.0 for exenatide-SOS and to 1.2 for exenatide-DOC. SEDDSs loaded with 0.26% (m/m) exenatide-SOS and 0.17% (m/m) exenatide-DOC had mean droplet size less than 30 nm and negative zeta potential. Ex vivo permeation experiments revealed 3.5-fold and 6.4-fold improvement in membrane permeability of the exenatide-SOS-loaded SEDDS vs. the exenatide-DOC-loaded SEDDS and exenatide solution, respectively. The orally administered exenatide-SOS-loaded SEDDS and exenatide-DOC-loaded SEDDS resulted in relative oral bioavailability vs. subcutaneous injection (SC) of 19.6 and 15.2%, respectively. Within this study, the key role of counterions for oral peptide delivery via HIP could be confirmed, and SOS was identified as a promising surfactant for this purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.0c00637DOI Listing

Publication Analysis

Top Keywords

oral bioavailability
16
hydrophobic ion
12
exenatide-doc-loaded sedds
12
bioavailability exenatide
8
ion pairing
8
exenatide-sos exenatide-doc
8
droplet size
8
zeta potential
8
membrane permeability
8
exenatide solution
8

Similar Publications

Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication.

View Article and Find Full Text PDF

Oral delivery of dihydroartemisinin for the treatment of melanoma via bovine milk exosomes.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.

Cancer, particularly skin cancer, is a major cause of mortality worldwide, with melanoma being one of the most aggressive and challenging to treat types. Current therapeutic options, such as dacarbazine (DTIC), have limitations due to dose-related toxicities like liver toxicity. Therefore, there is a need for new and effective treatments for melanoma.

View Article and Find Full Text PDF

Oral delivery of MOMIPP lipid nanoparticles for methuosis-induced cancer chemotherapy.

Nanoscale

January 2025

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Methuosis, a non-apoptotic pattern of cell death, triggers the accumulation of macropinosome-derived vacuoles in the cytoplasm. Through this novel mechanism, methuosis inducers possess great potential in fighting apoptosis-resistant cancer cells and offer a promising alternative for cancer treatment. However, the potent methuosis inducer, 3-(5-methoxy, 2-methyl-1-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), faces an intractable issue of insolubility in most solvents, hindering dosing and compromising the validation of its antitumor efficacy.

View Article and Find Full Text PDF

Discovery of INCB159020, an Orally Bioavailable KRAS G12D Inhibitor.

J Med Chem

January 2025

Department of Discovery Chemistry, Incyte Research Institute, Incyte Corporation, Wilmington, Delaware 19803 United States.

The inhibition of mutant KRAS proteins has emerged as a promising approach for treating KRAS-driven cancers, as evidenced by the clinical success of KRAS G12C inhibitors. KRAS G12D, the most common mutant, promises significant expansion of the addressable patient population; however, the reduced nucleophilicity of aspartate compared to cysteine poses significant challenges in balancing sufficient potency with ADME properties to support oral exposure. Herein, we describe the discovery of KRAS G12D inhibitor (), which achieves oral exposure in nonhuman primate (NHP).

View Article and Find Full Text PDF

The rearranged during transfection (RET) mutation such as the G810C mutation has significantly restricted the clinical application of selective RET inhibitors in the treatment of RET-driven cancers. This study designed and evaluated RET proteolysis targeting chimeras (PROTACs) based on selpercatinib (LOXO-292), identifying as a potent and selective RET PROTAC. effectively inhibited the proliferation of BaF3 cells with various RET mutations, showing IC values of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!