Retinal ganglion cells (RGCs) play a crucial role in the visual pathway. As their axons form the optic nerve, apoptosis of these cells causes neurodegenerative vision loss. RGC death could be triggered by increased intraocular pressure, advanced glycation end products, or mitochondrial dysfunction. In this review, we summarize the role of some neuroprotective factors in RGC injury: ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor, vascular endothelial growth factor, pigment epithelium-derived factor, glial cell line-derived neurotrophic factor, and Norrin. Each, in their own unique way, prevents RGC damage caused by glaucoma, ocular hypertension, ischemic neuropathy, and even oxygen-induced retinopathy. These factors are produced mainly by neurons, leukocytes, glial cells, and epithelial cells. Neuroprotective factors act via various signaling pathways, including JAK/STAT, MAPK, TrkA, and TrkB, which promotes RGC survival. Many attempts have been made to develop therapeutic strategies using these factors. There are ongoing clinical trials with CNTF and NGF, but they have not yet been accepted for clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000514441DOI Listing

Publication Analysis

Top Keywords

neuroprotective factors
12
neurotrophic factor
12
retinal ganglion
8
ganglion cells
8
growth factor
8
factor
6
cells
5
factors retina
4
retina role
4
role promoting
4

Similar Publications

Background: Multiple sclerosis (MS) is an autoimmune disorder affecting the central nervous system, with varying clinical manifestations such as optic neuritis, sensory disturbances, and brainstem syndromes. Disease progression is monitored through methods like MRI scans, disability scales, and optical coherence tomography (OCT), which can detect retinal thinning, even in the absence of optic neuritis. MS progression involves neurodegeneration, particularly trans-synaptic degeneration, which extends beyond the initial injury site.

View Article and Find Full Text PDF

Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine.

View Article and Find Full Text PDF

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Unlocking the potential of luteolin: A natural migraine management approach through network pharmacology.

J Tradit Complement Med

November 2024

Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India.

Background: Luteolin, a natural flavonoid, exhibits antioxidant and anti-inflammatory properties and has been investigated for potential health benefits. Its focus on migraine management arises from its ability to mitigate neuroinflammation, a key factor in migraine attacks.

Methods: pkCSM and Swiss ADME were employed to assess luteolin's pharmacokinetic properties, revealing challenges such as low water solubility and limited skin permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!