Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ciprofloxacin (CIP), one of the most widely used fluoroquinolone antibiotics, is frequently detected in the effluents of wastewater treatment plants and aquatic environments. In this study, a CIP-degrading bacterial strain was isolated from the sulfate reducing bacteria (SRB)-enriched sludge, identified as Paraclostridium sp. (i.e., strain S2). The effects of critical operational parameters on CIP removal by the strain S2 were systematically studied and these parameters were optimized via response surface methodology to maximize CIP removal. Furthermore, the pathway and kinetics of CIP removal were investigated by varying the initial CIP concentrations (from 0.1 to 20 mg/L). The CIP removal was characterized by rapid sorption followed by biotransformation with a specific biotransformation rate of 1975.7 ± 109.1 µg/g-cell dry weight/h at an initial CIP concentration of 20 mg/L. Based on the main transformation products, several biotransformation pathways have been proposed including piperazine ring cleavage, OH/F substitution, decarboxylation, and hydroxylation as the major transformation reactions catalyzed by cytochrome P450 and dehydrogenases. Acute toxicity assessment apparently shows that CIP biotransformation by strain S2 resulted in the formation of less toxic intermediates. To the best of our knowledge, this is the very first study in which a key functional microbe, Paraclostridium sp., highly effective in CIP biotransformation, was isolated from SRB-enriched sludge. The findings of this study could facilitate in developing appropriate bioaugmentation strategy, and in designing and operating an SRB-based engineered process for treating CIP-laden wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.116808 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!