Genetic characteristics and pathogenicity of novel reassortant H6 viruses isolated from wild birds in China.

Vet Microbiol

State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China. Electronic address:

Published: March 2021

During our routine surveillance, we isolated seven H6 avian influenza virus (AIV) strains, including three H6N1 strains, three H6N2 strains, and one H6N8 strain, from 3667 fresh fecal samples that were collected from wild bird habitats in China from March 2017 and May 2019. Phylogenetic analysis revealed that these viruses formed five different genotypes and have undergone complicate reassortment during their evolution by acquiring genes from AIVs of both Eurasian and North American lineages that have been previously detected in migrating waterfowl and poultry. Viral pathogenesis in mice showed that these H6 viruses replicated efficiently in both the nasal turbinates and lungs of mice without pre-adaptation, but none of them were lethal for mice. We studied the genetic characteristic and biological property of novel reassortant H6 viruses isolated from wild birds in China. It also highlights the need for continued surveillance of H6 AIVs circulating in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2021.108978DOI Listing

Publication Analysis

Top Keywords

novel reassortant
8
reassortant viruses
8
viruses isolated
8
isolated wild
8
wild birds
8
birds china
8
genetic characteristics
4
characteristics pathogenicity
4
pathogenicity novel
4
viruses
4

Similar Publications

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

BMC Genomics

December 2024

The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.

The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy.

View Article and Find Full Text PDF

Wild birds are important hosts of influenza A viruses (IAVs) and play an important role in their ecology. The emergence of the A/goose/Guangdong/1/1996 H5N1 (Gs/GD) lineage marked a shift in IAV ecology, leading to recurrent outbreaks and mortality in wild birds from 2002 onwards. This lineage has evolved and diversified over time, with a recent important derivative being the 2.

View Article and Find Full Text PDF

Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content.

View Article and Find Full Text PDF

Infectious bursal disease (IBD) is among the most impactful immunosuppressive diseases of poultry. Its agent, infectious bursal disease virus (IBDV), is prone to both mutation and reassortment, resulting in a remarkable variability. Traditionally, IBDV characterization relies on antigenicity and pathogenicity assessment, but multiple phylogenetic classifications have been recently proposed, whose implementation in molecular surveys helps generating informative and standardized epidemiological data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!