Chronic wounds, including diabetic, leg and pressure ulcers, impose a significant health care burden worldwide. Some evidence indicates that ultrasound can enhance soft tissue repair. However, therapeutic responses vary among individuals, thereby limiting clinical translation. Here, effects of pulsed ultrasound on dermal wound healing were assessed using a murine model of chronic, diabetic wounds. An ultrasound exposure system was developed to provide daily ultrasound exposures to full-thickness, excisional wounds in genetically diabetic mice. Wounds were exposed to 1 MHz ultrasound (2 ms pulse, 100 Hz pulse repetition frequency, 0-0.4 MPa) for 2 or 3 wk. Granulation tissue thickness and wound re-epithelialization increased as a function of increasing ultrasound pressure amplitude. At 2 wk after injury, significant increases in granulation tissue thickness and epithelial ingrowth were observed in response to 1 MHz pulsed ultrasound at 0.4 MPa. Wounds exposed to 0.4 MPa ultrasound for 3 wk were characterized by collagen-dense, revascularized granulation tissue with a fully restored, mature epithelium. Of note, only half of wounds exposed to 0.4 MPa ultrasound showed significant granulation tissue deposition after 2 wk of treatment. Thus, the db/db mouse model may help to identify biological variables that influence individual responses to pulsed ultrasound and accelerate clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897308 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2020.12.024 | DOI Listing |
Curr Org Synth
January 2025
Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.
Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
Lymphedema, a severe and complex inflammatory disease caused by lymphatic system insufficiency and impeded lymphatic drainage that causes an enormous physical and psychological burden on patients and may even lead to death, has long been a challenging issue in the medical field. Clinically, conventional approaches including surgical treatment and conservative treatment have been employed for lymphedema therapy, but their curative effect is still unsatisfactory because of high operational difficulty, high cost, and long-term reliance. In this study, a novel kind of piezoelectric microneedle driven by ultrasound (US) is proposed to regulate macrophage polarization and remodel the pathological inflammatory microenvironment in a noninvasive manner, thereby promoting lymphatic regeneration and improving lymphedema.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.
Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.
Heliyon
January 2025
Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Udmurt Federal Research Center of the Ural Branch of RAS, Baramzina str. 34, Izhevsk, 426067, Russia.
Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!