The coronavirus disease (COVID-19) pandemic, resulting from human-to-human transmission of a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), has led to a global health crisis. Given that the 3 chymotrypsin-like protease (3CLpro) of SARS-CoV-2 plays an indispensable role in viral polyprotein processing, its successful inhibition halts viral replication and thus constrains virus spread. Therefore, developing an effective SARS-CoV-2 3CLpro inhibitor to treat COVID-19 is imperative. A fluorescence resonance energy transfer (FRET)-based method was used to assess the proteolytic activity of SARS-CoV-2 3CLpro using intramolecularly quenched fluorogenic peptide substrates corresponding to the cleavage sequence of SARS-CoV-2 3CLpro. Molecular modeling with GEMDOCK was used to simulate the molecular interactions between drugs and the binding pocket of SARS-CoV-2 3CLpro. This study revealed that the V of SARS-CoV-2 3CLpro was about 2-fold higher than that of SARS-CoV 3CLpro. Interestingly, the proteolytic activity of SARS-CoV-2 3CLpro is slightly more efficient than that of SARS-CoV 3CLpro. Meanwhile, natural compounds PGG and EGCG showed remarkable inhibitory activity against SARS-CoV-2 3CLpro than against SARS-CoV 3CLpro. In molecular docking, PGG and EGCG strongly interacted with the substrate binding pocket of SARS-CoV-2 3CLpro, forming hydrogen bonds with multiple residues, including the catalytic residues C145 and H41. The activities of PGG and EGCG against SARS-CoV-2 3CLpro demonstrate their inhibition of viral protease activity and highlight their therapeutic potentials for treating SARS-CoV-2 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787066 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2020.12.106 | DOI Listing |
J Biomol Struct Dyn
December 2024
School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
Although the COVID-19 pandemic has been brought under control to some extent globally, there is still debate in the industry about the feasibility of using artificial intelligence (AI) to generate COVID small-molecule inhibitors. In this study, we explored the feasibility of using AI to design effective inhibitors of COVID-19. By combining a generative model with reinforcement learning and molecular docking, we designed small-molecule inhibitors targeting the COVID-19 3CLpro enzyme.
View Article and Find Full Text PDFJ Med Chem
December 2024
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Fluorine (F) substitution is a common method of drug discovery and development. However, there are no accurate approaches available for predicting the bioactivity changes after F-substitution, as the effect of substitution on the interactions between compounds and proteins (CPI) remains a mystery. In this study, we constructed a data set with 111,168 pairs of fluorine-substituted and nonfluorine-substituted compounds.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Yonsei Frontier Lab, Yonsei University, 50 Yonsei-ro, Sudaemoon-ku, Seoul 03722, Republic of Korea. Electronic address:
SARS-CoV-2 3C-like protease (3CL or M) cleaves the SARS-CoV-2 polyprotein and >300 intracellular host proteins to enhance viral replication. By lytic cell death following gasdermin (GSDM) pore formation in cell membranes, antiviral pyroptosis decreases 3CL expression and viral replication. Unexpectedly, 3CL and nucleocapsid proteins undergo unconventional secretion from infected cells via caspase-activated GSDMD/E pores in the absence of cell lysis.
View Article and Find Full Text PDFJ Mol Model
December 2024
Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
Context: Heparan sulfate (HS) linear polysaccharide glycosaminoglycan compound is linked to components from the cell surface and the extracellular matrix. HS mediates SARS-CoV-2 infection through spike protein binding to cell surface receptors and is required to bind ACE2, prompting the need for electronic structure and molecular docking evaluation of this core system to exploit this attachment in developing new derivatives. Therefore, we have studied five molecules based on HS using molecular docking and electronic structure analysis.
View Article and Find Full Text PDFHeliyon
December 2024
Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
The global outbreak of COVID-19 infection is the first pandemic the world has experienced in this 21 century. The novel coronavirus 2019 (nCoV-19) also called the SARS-CoV-2 is the reason behind the severe acute respiratory syndrome (SARS) that led to this worldwide crisis. In this current post-pandemic situation, despite having effective vaccines, the paucity of orally administrable drug molecules for such infections is a major drawback in this current scenario.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!