Entropy-driven catalytic amplification adjusted by stoichiometry for single-nucleotide variants detection with high abundance sensitivity.

Anal Chim Acta

College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN 518060, PR China. Electronic address:

Published: February 2021

Single-nucleotide variants (SNV) detection with high abundance sensitivity is of great significance in clinical application, molecular diagnostics and biological research. In this study, a high abundance sensitivity SNV detection strategy based on entropy-driven catalytic (EDC) amplification adjusted by stoichiometry is proposed. In EDC, the toehold exchange reaction is used to initiate subsequent catalytic reaction and can be adjusted by stoichiometry. When the by-product concentration in the toehold exchange reaction is excessive, the forward reaction will be inhibited, which can reduce or even block the unexpected reaction between the non-target and the probe. Meanwhile, some targets can still successfully take a toehold exchange reaction with the probe, thus completing the subsequent EDC. By adjusting the EDC, the SNV identification specificity of this system was improved and is superior to any single adjusted stoichiometry or EDC. When the low abundance target is detected from the mixture, this strategy enables SNV detection at 0.1% abundance with high abundance sensitivity. And even if the mixture contains three kind of 1000-fold interference sequences, this strategy can still discriminate the target SNV. Furthermore, the practical applicability of the adjusted EDC system was verified by p53 mutation discrimination in human urine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.12.023DOI Listing

Publication Analysis

Top Keywords

adjusted stoichiometry
16
high abundance
16
abundance sensitivity
16
snv detection
12
toehold exchange
12
exchange reaction
12
entropy-driven catalytic
8
amplification adjusted
8
single-nucleotide variants
8
detection high
8

Similar Publications

Decoupling Intrinsic Metal Ion Reduction Rates from Structural Outcomes in Multimetallic Nanoparticles.

J Am Chem Soc

December 2024

Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.

Simultaneously controlling both stoichiometry and atom arrangement during the synthesis of multimetallic nanoparticles is often challenging, especially when the desired metal precursors exhibit large differences in their intrinsic reduction kinetics. In such cases, traditional synthetic methods often lead to the formation of exclusively phase-segregated structures. In this study, we demonstrate that the relative reduction kinetics of the metal precursors can be manipulated independently of their intrinsic differences in reduction rates by modulating the instantaneous concentrations of the metal cation precursors.

View Article and Find Full Text PDF
Article Synopsis
  • Six key chemical transformations of aryl carbonyls can be achieved by manipulating the amounts of borane-amine and titanium tetrachloride reagents, which work together as a hydride donor, catalyst, and halogen source.
  • These transformations include reducing carbonyls to alcohols, converting carbonyls to halides, and deoxygenating compounds to form alkanes, among others.
  • The selectivity of these reactions relies on the stability of the carbocation intermediates, allowing for precise transformations at the benzylic positions of substrates, enabling techniques like selective benzylic dehalogenation and dehydroxyhalogenation of alcohols.
View Article and Find Full Text PDF

Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe, T-phase PdSe, and PdSe-phase. We found that the stability of Penta PdSe increases with the number of layers. The Penta PdSe, T-phase PdSe, and PdSe monolayers are all semiconducting, with band gaps of 1.

View Article and Find Full Text PDF

Hydrogen (H) as a fuel source presents a promising route toward decarbonization, though challenges in its storage remain significant. This study explores the synthesis and characterization of polytriphenylamine (PTPA) conjugated microporous polymers (CMPs) for H storage. Utilizing a combination of Buchwald-Hartwig (BH) coupling, the Bristol-Xi'an Jiaotong (BXJ) approach, and variations in monomer reactive site stoichiometry, a polymer with specific surface areas in excess of 1150 m g and micropore volume of 0.

View Article and Find Full Text PDF

Resource storage is a critical component of plant life history. While the storage of nonstructural carbohydrates in wood has been studied extensively, the multiple functions of mineral nutrient storage have received much less attention. Here, we highlight the size of wood nutrient pools, a primary determinant of whole-plant nutrient use efficiency, and a substantial fraction of ecosystem nutrient budgets, particularly tropical forests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!