Uranium sequestration abilities of Bacillus bacterium isolated from an alkaline mining region.

J Hazard Mater

Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India; Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, India. Electronic address:

Published: June 2021

The present study elaborates uranium sequestration by bacteria from alkaline wastewaters. In the investigation, a few bacterial strains were isolated from alkaline uranium mine water and were tested for uranium sequestration properties 16S rRNA analysis assigned the 10 bacterial isolates to 4 genera of Actinobacteria and Firmicutes. Among all the isolates tested, the strain Bacillus aryabhattai (TP03) has shown superior sequestration capacity at 5 and 10 mg/L U in 1 mM carbonate-bicarbonate buffer at pH 9.2. At low uranium concentrations (5 mg/L as uranyl carbonate), the strain could sequester ~70% of the uranium in 6 h with a loading capacity of 4.3 mg U/g dry bacterial biomass. Increase in carbonate-bicarbonate buffer concentrations and pH reduced the sequestration capacity. Scanning electron microscopy and energy dispersive X-ray fluorescence spectroscopy studies indicated the presence of uranium with the bacterial biomass. Fourier transform infra-red spectroscopy results confirmed the uranium sequestration by cell membrane phosphate, amide, and carboxyl functional groups. Transmission electron microscopy study showed uranium presence within the cell cytoplasm, thus supporting the hypothesis on active metabolism-dependent bioaccumulation of uranium. The kinetics study of uranium sequestration was well fitted to the pseudo-second-order model. Overall, this study infers that the isolated alkaliphilic bacteria from the mine waters have significant sequestration property for treating uranium-containing alkaline wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125053DOI Listing

Publication Analysis

Top Keywords

uranium sequestration
20
uranium
11
isolated alkaline
8
alkaline wastewaters
8
sequestration capacity
8
carbonate-bicarbonate buffer
8
bacterial biomass
8
electron microscopy
8
study uranium
8
sequestration
7

Similar Publications

Sequestration process and mechanism of U(VI) on montmorillonite-aspergillus niger composite.

Sci Total Environ

January 2025

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China. Electronic address:

The existence state and spatiotemporal evolution process of uranium in mineral-microbe complex systems are important factors that constrain its ecotoxicity. This study investigated the sequestration of U(VI) by montmorillonite-Aspergillus niger (MTA) composite using bioassay and spectroscopies approaches. The results demonstrate that the sequestration process and mechanism of U(VI) on MTA differ substantially from those of individual components.

View Article and Find Full Text PDF

Mitochondrial-Targeting Mesoporous Polydopamine Nanoparticles for Reducing Kidney Injury Caused by Depleted Uranium.

Adv Healthc Mater

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.

Article Synopsis
  • - Depleted uranium (DU) from the nuclear industry can harm kidneys by causing oxidative damage and inflammation through mitochondrial pathways, leading to health issues.
  • - A new nanoparticle, MPDA-PEG-TPP, has been developed to specifically target and protect kidneys from DU injury, showing better bioavailability and targeting compared to existing treatments.
  • - Test results indicate that MPDA-PEG-TPP effectively removes harmful reactive oxygen species and alleviates mitochondrial dysfunction, proving to be a promising solution for kidney protection against DU exposure.
View Article and Find Full Text PDF

Effect of silicon on the distribution and speciation of uranium in sunflower (Helianthus annuus).

J Hazard Mater

October 2024

Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China. Electronic address:

Article Synopsis
  • Sunflower (Helianthus annuus) shows potential for uranium (U) phytoremediation, but the factors affecting U absorption and its distribution in plants need more understanding, particularly the role of silicon (Si).
  • A study using hydroponics revealed that about 88% of U accumulates in the roots, with Si reducing U concentration by 60% and helping to mitigate phytotoxicity.
  • Si improved the distribution of U in root cell walls and in leaf trichomes but did not change U's chemical form, indicating it helps sunflowers cope with uranium-related stress while maintaining its hexavalent state.
View Article and Find Full Text PDF

Environmental or occupational exposure to natural uranium can have adverse health effects, with its chemical toxicity being mainly directed towards the kidneys and skeleton. This has led to the development of chelating agents to remove uranium from the human body, including the ligand 3,4,3-LI(1,2-HOPO). We have developed a new in vitro assay to assess the efficacy of 3,4,3-LI(1,2-HOPO) in attenuating uranium-induced bone cell damage.

View Article and Find Full Text PDF

Enhanced uranium sequestration through selenite-modified nano-chitosan loaded with melatonin: Facilitating U(IV) conversion.

Int J Pharm

September 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China. Electronic address:

The combined chemotoxicity and radiotoxicity associated with uranium, utilized in nuclear industry and military applications, poses significant threats to human health. Among uranium pollutants, uranyl is particularly concerning due to its high absorptivity and potent nephrotoxicity in its + 6 valence state. Here, we have serendipitously found NaSeO facilitates the conversion of U(VI) to U(IV) precipitates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!