Cadmium (Cd) toxicity causes severe perturbations in nitrogen (N) uptake and assimilation, and thereby interrupts normal plant growth. Molybdenum (Mo), a necessary trace element, plays important roles in N metabolism through regulating N assimilatory enzymes activities and expressions in higher plants. Taking this into account, a pot experiment was performed to explore the role of Mo in alleviating Cd-induced inhibitory effects on physio-biochemical processes, N metabolism, yield attributes and grain quality characters of two fragrant rice cultivars; Guixiangzhan and Meixiangzhan-2. Both the fragrant rice cultivars were treated with two levels of each Cd concentrations (0 and 100 mg/kg) and Mo treatments (0 and 0.15 mg/kg). The results revealed that Cd toxicity significantly reduced (p < 0.05) plant dry biomass, gaseous exchange attributes, chlorophyll contents, N utilizing and assimilatory enzymes activities, 2-acetyl-1-pyrroline (2AP) contents and grain yield in both cultivars; however, more severe inhibitions were observed in Meixiangzhan-2 than Guixiangzhan. Nevertheless, Mo application alleviated Cd stress and enhanced 2AP content and grain yield by 75.05% and 67.94% in Guixiangzhan and 87.71% and 83.51% in Meixiangzhan-2, respectively compared with no Mo application. Moreover, Mo application improved photosynthesis, chloroplast configuration, soluble protein and proline contents and also strengthened the N assimilatory pathway through efficient NO utilization, higher nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase activities and transcript levels under Cd stress. Collectively, our results imply that Mo-induced enhancement in N utilization and assimilation improved yield and grain quality characters of fragrant rice cultivars under Cd stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2021.111911 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!