Metal ion chelators based on 8-hydroxyquinoline (8-HQ) have been widely explored for the treatment of many diseases. When aimed at being developed into potent anticancer agent, a largely unmet issue is how to avoid nonspecific chelation of metal ions by 8-HQ in normal cells or tissues. In the current work, a two-step strategy was employed to both enhance the anticancer activity of 8-HQ and improve its cancer cell specificity. Considering the well-known anticancer activity of nitric oxide (NO), NO donor furoxan was first connected to 8-HQ to construct HQ-NO conjugates. These conjugates were screened for their cytotoxicity, metal-binding ability, and NO-releasing efficiency. Selected conjugates were further modified with a ROS-responsive moiety to afford prochelators. Among all the target compounds, prodrug HQ-NO-11 was found to potently inhibit the proliferation of many cancer cells but not normal cells. The abilities of metal chelation and NO generation by HQ-NO-11 were confirmed by various methods and were demonstrated to be essential for the anticancer activity of HQ-NO-11. In vivo studies revealed that HQ-NO-11 inhibited the growth of SW1990 xenograft to a larger extent than 8-HQ. Our results showcase a general method for designing novel 8-HQ derivatives and shed light on obtaining more controllable metal chelators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.113153 | DOI Listing |
Reprod Sci
December 2024
Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
Pomegranate (Punica granatum) is a widely cultivated fruit historically recognized for its health benefits and is regarded as a nutritional powerhouse. Pomegranate has a unique composition of bioactive compounds including hydrolysable tannins, anthocyanins, and other polyphenolic components. Of those, punicalagin and its subsequent metabolites are the most extensively studied, demonstrating antioxidant, anti-inflammatory, anti-cancer, and anti-nociceptive activity.
View Article and Find Full Text PDFSci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.
The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan.
Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!