AI Article Synopsis

  • Catalytic pyrolysis of ulva lactuca (UL) macroalgae was examined using ZrO-supported metal catalysts, specifically Co, Ni, and Co-Ni, across temperatures of 300-500 °C.
  • The Co-Ni/ZrO catalyst produced the highest bio-oil yield at 47.8 wt%, outperforming non-catalytic pyrolysis, which yielded 42.5 wt%, and even showed a slight increase to 49.2 wt% with more metal.
  • The quality of the bio-oil improved significantly with the use of catalysts, featuring a higher heating value (HHV) of 38.1 MJ/kg compared to 29.4 MJ/kg for non-catalytic bio-o

Article Abstract

Catalytic pyrolysis of ulva lactuca (UL) macroalgae was studied over a series of ZrO supported metal such as Co, Ni and Co-Ni metal catalysts at temperature range of 300-500 °C. Highest bio-oil yield (47.8 wt%) was found with Co-Ni/ZrO (10 wt%) catalyst while non-catalytic yielded 42.5 wt% bio-oil. Moreover with increases the metal amount to 15 wt%, the bio-oil yield slightly increased (49.2 wt%). The bio-oil quality significantly improved with using the catalysts compared to the non-catalytic pyrolysis. Catalytic pyrolysis also revealed that introducing Co-Ni into the ZrO could result in higher surface area and which increased active sites. Catalytic bio-oils were consisted of mainly long chain hydrocarbon in the range of C-C. Moreover, the catalytic bio-oils were showed the higher 'high heating value' (HHV) 38.1 MJ/kg as compare to non-catalytic bio-oils (29.4 MJ/kg). Catalysts have been showed excellent recyclability on bio-oil yield and compounds selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.124594DOI Listing

Publication Analysis

Top Keywords

catalytic pyrolysis
12
bio-oil yield
12
pyrolysis ulva
8
ulva lactuca
8
lactuca macroalgae
8
catalytic bio-oils
8
bio-oil
6
catalytic
5
macroalgae effects
4
effects mono
4

Similar Publications

Incorporating Indium Oxide into Microplasma Reactor for CO Conversion to Methanol.

Small Methods

January 2025

Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun, 130024, China.

The clean conversion of CO is a strategic issue for addressing global climate change and advancing energy transformation. While the current clean CO conversion is limited to the H pyrolysis process, using HO as a proton source is more promising and sustainable. A microplasma discharge method is developed, driven by electricity, and utilized for CO conversion with HO.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.

J Colloid Interface Sci

January 2025

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:

The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!