Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) are ubiquitous in various environmental media. Analytical problems, however, make it difficult to accurately determine their concentrations. To develop a satisfactory analytical method suitable for a diversity of PAHs and XPAHs in multiple environmental samples, we evaluated three commercial analytical columns (DB-5MS, Select PAH, and Rxi-PAH) for better chromatographic separation and optimized the analytical conditions for gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). Comparison of the abilities of the columns to separate peaks revealed that the Rxi-PAH was the best column for both PAH and XPAH analyses. Optimization of analytical conditions for GC-MS/MS resulted in sensitivities for PAHs and XPAHs that were 4.2-fold-2600-fold higher than the sensitivities of GC-high-resolution MS (GC-HRMS) (an example of a traditional analytical method). Although there were no statistically significant differences between the instrumental detection limits (IDLs) of PAHs and XPAHs measured by GC-HRMS, the IDLs of XPAHs were significantly lower than those of PAHs when measured by GC-MS/MS. This difference could be attributed to the unique ionization patterns of XPAHs in the GC-MS/MS analysis, which suppressed background noise and increased the analytical sensitivity. Analyses of PAHs and XPAHs in grilled chicken, vehicle exhaust, sea sediment, ambient air, and indoor dust via the analytical method optimized in this study revealed that the proposed method was sufficiently sensitive, comprehensive, and versatile for risk assessment purposes, and could eliminate interferences associated with the co-elution of target PAHs and XPAHs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129535DOI Listing

Publication Analysis

Top Keywords

pahs xpahs
20
analytical method
12
polycyclic aromatic
8
aromatic hydrocarbons
8
environmental samples
8
gas chromatography-triple
8
chromatography-triple quadrupole
8
quadrupole mass
8
mass spectrometry
8
xpahs
8

Similar Publications

Halogenated polycyclic aromatic hydrocarbons (XPAHs) present potential risk owing to their greater toxicity than PAHs. This study aimed to explore their profiles in commercial salt-tolerant rice, effects of saline cultivation (0‰ and 3‰ saline conditions), and formation during home cooking. A validated SPE-GC-MS/MS method was used to analyze PAHs and XPAHs in 16 commercial salt-tolerant rice samples.

View Article and Find Full Text PDF

Levels, enrichment characteristics, and health risks of halogenated and parent polycyclic aromatic hydrocarbons in traditional smoked pork.

Environ Pollut

November 2024

College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, 100081, China. Electronic address:

Chinese traditional smoked pork was contaminated with polycyclic aromatic hydrocarbons (PAHs) and chlorinated and brominated PAHs (ClPAHs and BrPAHs; XPAHs) during the smoking process. Therefore, our study investigated the concentrations, enrichment characteristics, and health risks associated with PAHs, as well as ClPAHs and BrPAHs in Chinese traditional smoked pork. The total concentrations of PAHs, ClPAHs and BrPAHs in traditional smoked pork ranged from 90.

View Article and Find Full Text PDF

Profiles, exposure assessment and expanded screening of PAHs and their derivatives in one petroleum refinery facility of China.

J Environ Sci (China)

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China; Hubei Key Laboratory of Environmental and Health Effects of Persistence Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 10 ng/m), total suspended particulate (TSP) (mean= 4.

View Article and Find Full Text PDF

A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity.

Environ Sci Technol

October 2023

SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China.

Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs).

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) have been a concern because of their high toxicity. Monitoring indoor PAHs and XPAHs concentrations is important for risk assessment because humans typically spend >90 % of their time indoors. However, the background levels of indoor PAHs and XPAHs concentrations are unknown because of the low sensitivity of conventional analytical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!