Differential expression of two ATPases revealed by lipid raft isolation from gills of euryhaline teleosts with different salinity preferences.

Comp Biochem Physiol B Biochem Mol Biol

Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan. Electronic address:

Published: June 2021

In euryhaline teleosts, Na, K-ATPase (NKA) and V-type H + -ATPase A (VHA A) are important ion-transporters located in cell membrane. Lipid rafts (LR) are plasma membrane microdomains enriched in cholesterol, sphingolipids, and proteins (e.g., flotillin). Flotillin is a LR-associated protein, commonly used as the LR marker. Previous mammalian studies showed that LR may play a crucial role in ion exchanges. Meanwhile, studies on mammals and rainbow trout showed that NKA were found to be present mainly in LR. However, little is known about LR in fish. Therefore, the present study aimed to investigate the involvement of branchial LR in osmoregulation of tilapia and milkfish, two euryhaline teleosts with different salinity preferences, by (i) extracting LR from the gills of euryhaline teleosts; (ii) detecting the abundance of LR marker protein (flotillin-2) and ion-transporters (NKA and VHA A) in branchial LR and non-LR of fresh water- and seawater-acclimated milkfish and tilapia. The results indicated that the protein abundance of LR marker, flotillin-2, changed with environmental salinities in branchial LR of tilapia. In addition, flotillin-2 and NKA were only found in LR in both tilapia and milkfish gills, while VHA A were mainly present in non-LR. Relative protein abundance of NKA was found to be significantly higher in gills of freshwater milkfish and seawater tilapia, while VHA A was significantly higher in gills of freshwater tilapia and milkfish. This study illustrated differential distribution and salinity-dependent expression of NKA and VHA A in cell membrane of gill tissues of euryhaline teleosts with different salinity preferences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2021.110562DOI Listing

Publication Analysis

Top Keywords

euryhaline teleosts
20
teleosts salinity
12
salinity preferences
12
tilapia milkfish
12
gills euryhaline
8
cell membrane
8
abundance marker
8
nka vha
8
protein abundance
8
higher gills
8

Similar Publications

Regulation of Branchial Anoctamin 1 Expression in Freshwater- and Seawater-Acclimated Japanese Medaka, Oryzias latipes.

J Exp Zool A Ecol Integr Physiol

December 2024

Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan.

In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl secretion for SW adaptation, while alternative Cl excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment.

View Article and Find Full Text PDF

Magnesium is important for enzymatic reactions and physiological functions, and its intracellular concentration is tightly regulated. Atlantic salmon has the ability to handle large changes in environmental Mg concentration when migrating between freshwater and seawater habitats, making it a relevant model to investigate Mg homeostasis. Parr-smolt transformation (PST) is a life history transition which prepares the freshwater juvenile for the marine environment.

View Article and Find Full Text PDF

Salinity and prolactin regulate in the model teleost, .

Am J Physiol Regul Integr Comp Physiol

November 2024

Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States.

To maintain internal ion balance in marine environments, teleost fishes leverage seawater (SW)-type ionocytes to actively secrete Na and Cl into the environment. It is well established that SW-type ionocytes use apically expressed cystic fibrosis transmembrane conductance regulator 1 (Cftr1) as a conduit for Cl to exit the gill. Here, we investigated whether the Ca-activated Cl channel, anoctamin 1 (Ano1), provides an additional path for Cl-secretion in euryhaline mummichogs ().

View Article and Find Full Text PDF

Identifying how the demands of migration are met at the level of gene expression is critical for understanding migratory physiology and can potentially reveal how migratory forms evolve from nonmigratory forms and vice versa. Among fishes, migration between freshwater and seawater (diadromy) requires considerable osmoregulatory adjustments, powered by the ion pump Na, K-ATPase (NKA) in the gills. Paralogs of the catalytic α-subunit of the pump (NKA α1a and α1b) are reciprocally upregulated in fresh- and seawater, a response known as paralog-switching, in gills of some diadromous species.

View Article and Find Full Text PDF

Endocrine control of gill ionocyte function in euryhaline fishes.

J Comp Physiol B

October 2024

Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA.

The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na, Cl, and Ca with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!