Retinal vein occlusion (RVO) is a vascular disease that represents characteristic retinal hemorrhage and dilated retinal veins. Despite its clinical importance, its pathogenesis remains largely unknown because of limited opportunities to acquire human retinal samples. Therefore, an animal model that reproduces the clinical features of RVO patients is required for further investigation. In this study, we established a pigmented murine RVO model that reproduced characteristic fundus appearances similar to human RVO findings. Retinal edema in this model was observed in both optical coherence tomography and histological analysis, which is a clinically important outcome. With quantitative real-time PCR analysis on retinal samples, we revealed that the mRNA level of vascular endothelial growth factor (VEGF) increased in the retina induced RVO. Moreover, this retinal edema was reduced by intravitreal injection of anti-VEGF antibody. These results were consistent with human clinical knowledge and suggested that this model could be a useful tool for research into new therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2021.108441 | DOI Listing |
Nutrients
January 2025
Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.
: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Engineering, Qingdao Agricultural University, China. Electronic address:
The study aimed to investigate the stability and anti-allergic efficacy of phycocyanin through the construction of microcapsules. Phycocyanin (PC), a blue pigment found in microalgae, has attracted significant attention due to its anti-allergic properties. However, it is susceptible to instability when exposed to light, heat, and changes in pH.
View Article and Find Full Text PDFExp Eye Res
January 2025
Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China. Electronic address:
Due to its unique physiological structure and functions, the eye has received considerable attention in the field of Adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.
View Article and Find Full Text PDFPhytomedicine
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:
Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.
View Article and Find Full Text PDFFront Immunol
January 2025
Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.
Introduction: Gastropod hemocyanins are potent immunostimulants in mammals, a trait associated with their large molecular size and unusual glycosylation patterns. While the hemocyanin from the marine snail keyhole limpet (KLH), has been widely studied and successfully employed as a carrier/adjuvant in several immunological applications, as well as a non-specific immunostimulant for bladder cancer treatment, few other gastropod hemocyanins have been biochemically and immunologically characterized. In this work, we investigated the immunogenic properties of the hemocyanin from (PcH), an invasive south American freshwater snail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!