ETS factors are required but not sufficient for specific patterns of enhancer activity in different endothelial subtypes.

Dev Biol

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom. Electronic address:

Published: May 2021

Correct vascular differentiation requires distinct patterns of gene expression in different subtypes of endothelial cells. Members of the ETS transcription factor family are essential for the transcriptional activation of arterial and angiogenesis-specific gene regulatory elements, leading to the hypothesis that they play lineage-defining roles in arterial and angiogenic differentiation directly downstream of VEGFA signalling. However, an alternative explanation is that ETS binding at enhancers and promoters is a general requirement for activation of many endothelial genes regardless of expression pattern, with subtype-specificity provided by additional factors. Here we use analysis of Ephb4 and Coup-TFII (Nr2f2) vein-specific enhancers to demonstrate that ETS factors are equally essential for vein, arterial and angiogenic-specific enhancer activity patterns. Further, we show that ETS factor binding at these vein-specific enhancers is enriched by VEGFA signalling, similar to that seen at arterial and angiogenic enhancers. However, while arterial and angiogenic enhancers can be activated by VEGFA in vivo, the Ephb4 and Coup-TFII venous enhancers are not, suggesting that the specificity of VEGFA-induced arterial and angiogenic enhancer activity occurs via non-ETS transcription factors. These results support a model in which ETS factors are not the primary regulators of specific patterns of gene expression in different endothelial subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026812PMC
http://dx.doi.org/10.1016/j.ydbio.2021.01.002DOI Listing

Publication Analysis

Top Keywords

arterial angiogenic
16
ets factors
12
enhancer activity
12
specific patterns
8
endothelial subtypes
8
patterns gene
8
gene expression
8
vegfa signalling
8
ephb4 coup-tfii
8
vein-specific enhancers
8

Similar Publications

Madecassoside mitigates acute myocardial infarction injury by activating the PKCB/SPARC signaling pathway.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection.

View Article and Find Full Text PDF

Introduction: VM202 is a plasmid encoding two isoforms of hepatocyte growth factor (HGF). In preclinical studies, HGF stimulated angiogenesis and muscle regeneration. This preliminary clinical trial tested the hypothesis that VM202 injections in gastrocnemius muscle would improve walking performance in people with mild to moderate and symptomatic lower extremity peripheral artery disease (PAD).

View Article and Find Full Text PDF

Immune and Metabolic Mechanisms of Endothelial Dysfunction.

Int J Mol Sci

December 2024

Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany.

Endothelial dysfunction is a strong prognostic factor in predicting the development of cardiovascular diseases. Dysfunctional endothelium loses its homeostatic ability to regulate vascular tone and prevent overactivation of inflammation, leading to vascular dysfunction. These functions are critical for vascular homeostasis and arterial pressure control, the disruption of which may lead to hypertension.

View Article and Find Full Text PDF

Ischemic stroke results from a disruption of cerebral blood flow. Adrenocorticotropic hormone (ACTH) serves as the basis for the creation of synthetic peptides as neuroprotective agents for stroke therapy. Previously, using RNA-Seq we first revealed differential expressed genes (DEGs) associated with ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP peptides under cerebral ischemia conditions.

View Article and Find Full Text PDF

Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!