Objective: This study aims to correlate new experimental data relevant to the description of the combined evaporation/permeation process of a perfume applied onto the skin.
Methods: The vapour pressure data were measured by thermogravimetric analysis (TG-DTA). The Antoine constants and the Clarke and Glew parameters were determined for the same set of fragrance molecules to describe its low vapour pressures at new temperature ranges. The permeability coefficient of a set of 14 fragrance molecules in ethanolic solution was determined by Franz diffusion cell experiments, using porcine skin. The samples were analysed by gas chromatography with a flame ionization detector (GC/FID) and high-performance liquid chromatography with UV visible detector (HPLC/UV). A QSAR model was proposed to correlate the experimental data.
Results: The Antoine constants were determined and presented low standard deviations. The Clarke and Glew physically significant parameters were obtained along with its statistical analysis. The fitting is good since the magnitude order is in accordance with the literature, associated with the low correlation between the estimated parameters and low standard deviations. The presented correlation, based on a mixture using only ethanol as solvent, showed better results than previous QSAR models with a standard relative deviation ( of 0.190, a standard error (SE) of 0.397 and a determination coefficient (R ) of 0.7786.
Conclusion: The dataset is still small compared to larger and more general QSAR models; however, it is much more specific as to the type of solvent and class of materials studied. This work represents an advance for the modelling of the perfume diffusion process since it specifies important properties that until then had been treated in a more general way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.12686 | DOI Listing |
Chem Commun (Camb)
January 2025
Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of High Pressure Physics, PAS, Warsaw, Poland.
This study addresses the issue of effective carrier injection to quantum wells in laser diode structures. The nitride light emitting structures used in this study were fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE). We developed three distinct sets of samples, with varying quantum barrier thickness, different QWs indium composition and different position relative to the p- and n-sides of the structure.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Water Resources Department, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, 100038, China.
The Yellow River Basin (YRB) has emerged as a focal point of global vegetation greening due to climate change and human activities. Given its ecological vulnerability and intense human activities, environmental sustainability has become an urgent concern for scholars. Current research on the hydrological effects of vegetation greening, from a reductionist perspective, still struggle to answer the crucial question that whether vegetation water stress is increasing or decreasing.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
The upgrading of ethanol to -butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, -butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!