Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anatomy teaching has traditionally been based on dissection. However, alternative teaching modalities constantly emerge, the use of which along with a decrease in teaching hours has brought the anatomy knowledge of students and young doctors into question. In this way, the goal of the present study is to a. compare the efficacy of the most common teaching modalities and b. investigate students' perceptions on each modality. In total, 313 medical students were taught gross anatomy of the upper limb, using four different learning modalities: dissection (n = 80), prosections (n = 77), plastic models (n = 84) and 3D anatomy software (n = 72). Students' knowledge was examined by 100 multiple-choice and tag questions followed by an evaluation questionnaire. Regarding performance, the dissection and the 3D group outperformed the prosection and the plastic models group in total and multiple-choice questions. The performance of the 3D group in tag questions was also statistically significantly higher compared to the other three groups. In the evaluation questionnaire, dissection outperformed the rest three modalities in questions assessing students' satisfaction, but also fear or stress before the laboratory. Moreover, dissection and 3D software were considered more useful when preparing for clinical activities. In conclusion, dissection remains first in students' preferences and achieves higher knowledge acquisition. Contemporary, 3D anatomy software are considered equally important when preparing for clinical activities and mainly favor spatial knowledge acquisition. Prosections could be a valuable alternative when dissection is unavailable due to limited time or shortage of cadavers. Plastic models are less effective in knowledge acquisition but could be valuable when preparing for cadaveric laboratories. In conclusion, the targeted use of each learning modality is essential for a modern medical curriculum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810993 | PMC |
http://dx.doi.org/10.1038/s41598-020-80860-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!