A conventional light management approach on a photo-catalyst is to concentrate photo-intensity to enhance the catalytic rate. We present a counter-intuitive approach where light intensity is distributed below the electronic photo-saturation limit under the principle of light maximization. By operating below the saturation point of the photo-intensity induced hydroxide growth under reactant gaseous H+CO atmosphere, a coating of defect engineered InO(OH) nanorod Reverse Water Gas Shift solar-fuel catalyst on an optical waveguide outperforms a coated plane by a factor of 2.2. Further, light distribution along the length of the waveguide increases optical pathlengths of the weakly absorptive green and yellow wavelengths, which increases CO product rate by a factor of 8.1-8.7 in the visible. Synergistically pairing with thinly doped silicon on the waveguide enhances the CO production rate by 27% over the visible. In addition, the persistent photoconductivity behavior of the InO(OH) system enables CO production at a comparable rate for 2 h after turning off photo-illumination, enhancing yield with 44-62% over thermal only yield. The practical utility of persistent photocatalysis was demonstrated through outdoor solar concentrator tests, which after a day-and-night cycle showed CO yield increase of 19% over a day-light only period.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810999 | PMC |
http://dx.doi.org/10.1038/s41467-020-20613-2 | DOI Listing |
We report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.
View Article and Find Full Text PDFWe present, for the first time, to our knowledge, power splitters with multiple channel configurations in one-dimensional grating waveguides (1DGWs) that maintain crystal lattice-sensitive Bloch mode profiles without perturbation across all output channels, all within an ultra-miniaturized footprint of just 2.1 × 2.2 μm.
View Article and Find Full Text PDFThis Letter discusses the limitations of immersion-free recording schemes for holographic waveguide displays. Traditional holographic recording of waveguides requires recording angles exceeding the critical angle of the hologram-cladding interface. Achieving these angles necessitates edge-lit exposure using prisms and immersion liquids, which are challenging for roll-to-roll mass production and hinder widespread adoption.
View Article and Find Full Text PDFWe propose a low-polarization-sensitive 1 × 2 carrier-injection-type silicon photonic switch consisting of a single Mach-Zehnder interferometer, an input-/output-side polarization splitter and rotators, bidirectional light injection, and an external optical circulator. A polarization-dependent loss (PDL) of 1.3 dB was achieved using the proposed structure, whereas a PDL exceeding 17 dB was observed without the structure.
View Article and Find Full Text PDFLarge-scale quantum photonic circuits require integrating multiple single-photon sources, which are typically based on spontaneous four-wave mixing (SFWM) in spiral waveguides or microring resonators (MRRs). Photons can be generated in both clockwise (CW) and counterclockwise (CCW) orientations from a single source in a Sagnac configuration, showing promise for improving scalability. In this work, we propose a fully integrable scheme for bidirectional creation and usage of single photons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!