Background: Radiation-induced rectal epithelial damage is a very common side effect of pelvic radiotherapy and often compromise the life quality and treatment outcome in patients with pelvic malignancies. Unlike small bowel and colon, effect of radiation in rectal stem cells has not been explored extensively. Here we demonstrate that Lgr5-positive rectal stem cells are radiosensitive and organoid-based transplantation of rectal stem cells mitigates radiation damage in rectum.
Methods: C57Bl6 male mice (JAX) at 24 h were exposed to pelvic irradiation (PIR) to determine the radiation effect in pelvic epithelium. Effect of PIR on Lgr5-positive rectal stem cells (RSCs) was determined in Lgr5-EGFP-Cre-ERT2 mice exposed to PIR. Effect of PIR or clinically relevant fractionated PIR on regenerative response of Lgr5-positive RSCs was examined by lineage tracing assay using Lgr5-eGFP-IRES-CreERT2; Rosa26-CAG-tdTomato mice with tamoxifen administration to activate Cre recombinase and thereby marking the ISC and their respective progeny. Ex vivo three-dimensional organoid cultures were developed from Lgr5-EGFP-Cre-ERT2 mice. Organoid growth was determined by quantifying the budding crypt/total crypt ratio. Organoids from Lgr5-EGFP-ires-CreERT2-TdT mice were transplanted in C57Bl6 male mice exposed to PIR. Engraftment and repopulation of Lgr5-positive RSCs were determined after tamoxifen administration to activate Cre recombinase in recipient mice. Statistical analysis was performed using Log-rank (Mantel-Cox) test and paired two-tail t test.
Result: Exposure to pelvic irradiation significantly damaged rectal epithelium with the loss of Lgr5+ve rectal stem cells. Radiosensitivity of rectal epithelium was also observed with exposure to clinically relevant fractionated pelvic irradiation. Regenerative capacity of Lgr5+ve rectal stem cells was compromised in response to fractionated pelvic irradiation. Ex vivo organoid study demonstrated that Lgr5+ve rectal stem cells are sensitive to both single and fractionated radiation. Organoid-based transplantation of Lgr5+ve rectal stem cells promotes repair and regeneration of rectal epithelium.
Conclusion: Lgr5-positive rectal stem cells are radiosensitive and contribute to radiation-induced rectal epithelial toxicity. Transplantation of Lgr5-positive rectal stem cells mitigates radiation-induced rectal injury and promotes repair and regeneration process in rectum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811242 | PMC |
http://dx.doi.org/10.1186/s13287-020-02111-w | DOI Listing |
Cancer Lett
January 2025
Molecular Medicine Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
Oral cavity squamous cell carcinoma (OSCC), a leading subtype of head and neck cancer, exhibits high global incidence and mortality rates. Despite advancements in surgery and radiochemotherapy, approximately one-third of patients experience relapse. To improve current targeted and immunotherapy strategies for recurrent OSCC, we conducted multi-omics analyses on pretreatment OSCC samples (cohorts 1 and 2, n=137) and identified A3A and EGFR, both at the RNA and protein levels, as inversely expressed markers for patient stratification and response prediction.
View Article and Find Full Text PDFFront Microbiol
January 2025
BMT Unit, Azienda Ospedaliera Villa Sofia-Cervello, Palermo, Italy.
Colonization by multidrug-resistant (MDR) bacteria and related bloodstream infections (BSI) are associated with a high rate of mortality in patients with hematological malignancies after intensive chemotherapy and allogeneic stem cell transplantation (allo-SCT). In this retrospective study, we analyzed the outcomes of patients colonized with MDR bacteria (primarily carbapenem-resistant , KPC), before allo-SCT. We also investigated the feasibility and safety of an antimicrobial de-escalating approach in these patients.
View Article and Find Full Text PDFJ Surg Oncol
January 2025
Colorectal Research Unit, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Background And Objectives: Little is known about the relationship between neoadjuvant chemotherapy (NAC) and perioperative morbidity for patients undergoing combined resection of rectal cancer and sLM. The purpose of this study is to determine the impact of NAC on 30-day morbidity for patients who undergo combined resection of primary rectal cancer and sLM.
Materials And Methods: A retrospective cohort study of patients undergoing combined resection of primary rectal cancer and sLM between 2016 and 2020 at participating NSQIP hospitals.
Stem Cell Res
January 2025
Programme in Molecular Medicine, Research Institute for SickKids Hospital, Toronto, Canada; Department of Clinical and Experimental Medicine, University of Foggia, Italy. Electronic address:
Cystic Fibrosis (CF) is a life-shortening disease that is caused by mutations in the CFTR gene, a gene that is expressed in multiple organs. There are several primary tissue models of CF disease, including nasal epithelial cultures and rectal organoids, that are effective in reporting the potential efficacy of mutation-targeted therapies called CFTR modulators. However, there is the well-documented variation in tissue dependent, therapeutic response amongst CF patients, even those with the same CF-causing mutation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy.
After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!