Finger-Vein Recognition Using Heterogeneous Databases by Domain Adaption Based on a Cycle-Consistent Adversarial Network.

Sensors (Basel)

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Korea.

Published: January 2021

The conventional finger-vein recognition system is trained using one type of database and entails the serious problem of performance degradation when tested with different types of databases. This degradation is caused by changes in image characteristics due to variable factors such as position of camera, finger, and lighting. Therefore, each database has varying characteristics despite the same finger-vein modality. However, previous researches on improving the recognition accuracy of unobserved or heterogeneous databases is lacking. To overcome this problem, we propose a method to improve the finger-vein recognition accuracy using domain adaptation between heterogeneous databases using cycle-consistent adversarial networks (CycleGAN), which enhances the recognition accuracy of unobserved data. The experiments were performed with two open databases-Shandong University homologous multi-modal traits finger-vein database (SDUMLA-HMT-DB) and Hong Kong Polytech University finger-image database (HKPolyU-DB). They showed that the equal error rate (EER) of finger-vein recognition was 0.85% in case of training with SDUMLA-HMT-DB and testing with HKPolyU-DB, which had an improvement of 33.1% compared to the second best method. The EER was 3.4% in case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB, which also had an improvement of 4.8% compared to the second best method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828566PMC
http://dx.doi.org/10.3390/s21020524DOI Listing

Publication Analysis

Top Keywords

finger-vein recognition
16
heterogeneous databases
12
recognition accuracy
12
cycle-consistent adversarial
8
accuracy unobserved
8
case training
8
compared second
8
second best
8
best method
8
finger-vein
6

Similar Publications

The problems of complex background, low quality of finger vein images, and poor discriminative features have been the bottleneck of feature extraction and finger vein recognition. To this end, we propose a feature extraction algorithm based on the open-set testing protocol. In order to eliminate the interference of irrelevant areas, this paper proposes the idea of segmentation-assisted classification, that is, using the rough mask of the finger vein to constrain the feature learning process so that the network can focus on the vein area and learn greater weight for the vein.

View Article and Find Full Text PDF

Visual Feature-Guided Diamond Convolutional Network for Finger Vein Recognition.

Sensors (Basel)

September 2024

Artificial Intelligence and Computer Vision Laboratory, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China.

Finger vein (FV) biometrics have garnered considerable attention due to their inherent non-contact nature and high security, exhibiting tremendous potential in identity authentication and beyond. Nevertheless, challenges pertaining to the scarcity of training data and inconsistent image quality continue to impede the effectiveness of finger vein recognition (FVR) systems. To tackle these challenges, we introduce the visual feature-guided diamond convolutional network (dubbed 'VF-DCN'), a uniquely configured multi-scale and multi-orientation convolutional neural network.

View Article and Find Full Text PDF

DDP-FedFV: A Dual-Decoupling Personalized Federated Learning Framework for Finger Vein Recognition.

Sensors (Basel)

July 2024

College of Information Science and Technology and College of Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China.

Finger vein recognition methods, as emerging biometric technologies, have attracted increasing attention in identity verification due to their high accuracy and live detection capabilities. However, as privacy protection awareness increases, traditional centralized finger vein recognition algorithms face privacy and security issues. Federated learning, a distributed training method that protects data privacy without sharing data across endpoints, is gradually being promoted and applied.

View Article and Find Full Text PDF

To address several common problems of finger vein recognition, a lightweight finger vein recognition algorithm by means of a small sample has been proposed in this study. First of all, a Gabor filter is applied to deal with the images for the purpose of that these processed images can simulate a kind of situation of finger vein at low temperature, such that the generalization ability of the algorithm model can be improved as well. By cutting down the amount of convolutional layers and fully connected layers in VGG-19, a lightweight network can be given.

View Article and Find Full Text PDF

With the development of biometric identification technology, finger vein identification has received more and more widespread attention for its security, efficiency, and stability. However, because of the performance of the current standard finger vein image acquisition device and the complex internal organization of the finger, the acquired images are often heavily degraded and have lost their texture characteristics. This makes the topology of the finger veins inconspicuous or even difficult to distinguish, greatly affecting the identification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!