Engine oil-derived ash particles emitted from internal combustion (IC) engines are unwanted by-products, after oil is involved in in-cylinder combustion process. Since they typically come out together with particulate emissions, no detail has been reported about their early-stage particles other than agglomerated particles loaded on aftertreatment catalysts and filters. To better understand ash formation process during the combustion process, differently formulated engine oils were dosed into a fuel system of a gasoline direct injection (GDI) engine that produces low soot mass emissions at normal operating conditions to increase the chances to find stand-alone ash particles separated from soot aggregates in the sub-20-nm size range. In addition to them, ash/soot aggregates in the larger size range were examined using scanning transmission electron microscopy (STEM)-X-ray electron dispersive spectroscopy (XEDS) to present elemental information at different sizes of particles from various oil formulations. The STEM-XEDS results showed that regardless of formulated oil type and particle size, Ca, P and C were always contained, while Zn was occasionally found on relatively large particles, suggesting that these elements get together from an early stage of particle formation. The S, Ca and P K-edge X-ray absorption near edge structure (XANES) analyses were performed for bulk soot containing raw ash. The linear combination approach & cross-checking among XANES results proposed that Ca(OH)(PO), Ca(PO) and Zn(PO) are potentially major chemical compounds in raw ash particles, when combined with the STEM-XEDS results. Despite many reports that CaSO is a major ash chemical when ash found in DPF/GFP systems was examined, it was observed to be rarely present in raw ashes using the S K-edge XANES analysis, suggesting ash transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.116390DOI Listing

Publication Analysis

Top Keywords

ash particles
12
ash
10
engine oil-derived
8
oil-derived ash
8
ash formation
8
formation process
8
combustion process
8
size range
8
raw ash
8
particles
7

Similar Publications

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

With the continuous clamor for a reduction in embodied carbon in cement, rapid solution to climate change, and reduction to resource depletion, studies into substitute binders become crucial. These cementitious binders can potentially lessen our reliance on cement as the only concrete binder while also improving concrete functional properties. Finer particles used in cement microstructure densify the pore structure of concrete and enhance its performance properties.

View Article and Find Full Text PDF

The triboelectric charging of granular material is a long-standing and poorly understood phenomenon, with numerous scientific and industrial applications ranging from volcanic lightning to pharmaceutical production. The most widely utilised apparatus for the study of such charging is the Faraday cup, however, existing analysis of the resulting measurements is often simplistic and fails to distinguish charging due to particle-particle interactions from charging occurring through other mechanisms. Here, we outline a modular approach for interpreting these measurements, enabling triboelectric phenomena to be explored in greater detail.

View Article and Find Full Text PDF

Coal mined in the shut-down Raša mine in Istria, Croatia had a high organic sulphur content. What has remained of its local combustion is a coal and ash waste (legacy site) whose trace element and radionuclide composition in soil has enduring consequences for the environment. The aim of this study was to follow up on previous research and investigate the potential impact on surrounding soil and local residents by characterising the site's ash and soil samples collected in two field campaigns.

View Article and Find Full Text PDF

The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!