J Hazard Mater
Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, 2362806 Valparaíso, Chile.
Published: June 2021
Biosorption of toxic metals in microalgae is a process relying on the presence of cell wall reactive groups acting as binding sites. This work studied the effect of culture conditions on the outer cell wall composition of C. vulgaris and cadmium biosorption. The experiments were conducted in continuous culture under light and nitrogen limitation at two growth rates (0.4 and 0.2 d). Functional groups were profiled using ATR-FTIR spectrometry, and total cadmium biosorption was assayed. Significant differences in composition were attested the most salient being the absence of carboxyl groups in the light deprived states and a larger number of carbohydrates and amino groups in the nitrogen deprived cultures, particularly amino groups from deacetylated D-glucosamine polysaccharides. Higher biosorption was obtained with the nitrogen-restricted biomass, reaching a maximum of 11.9 mg/g, as compared to a minimum of 8.0 mg/g achieved in the light-restricted states. The increased biosorption exhibited by nitrogen-restricted strains was attributed to the deacetylated amino groups that have enhanced cation affinity. This work has shown that the characteristics of the outer cell wall can be engineered by culture conditions to improve biosorption, providing a new approach that opens up new research frontiers for the biosorption of hazardous metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.