A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells (Navicula sp.). | LitMetric

Hypothesis: Bacillariophyceae (i.e., diatoms) are an important class of algae with potential use in the production of proteins and lipids including long-chain ω-3 polyunsaturated fatty acids. Biphasic extraction of microalgae lipids using water-immiscible solvents such as hexane, can avoid the excessive energy required to distil solvents from water, but generally requires energy-intensive rupture of the cells. The unique cell structure and surface chemistry of diatoms compared to other microalgae species might allow biphasic lipid extraction without prior cell rupture.

Experiments: The kinetics of biphasic lipid extraction from intact Navicula sp. cells was investigated during low-shear and high-shear mixing, and with prior or simultaneous application of ultrasound (20 kHz at 0.57 W/mL). Dynamic interfacial tension measurements and electron microscopic analysis were used to investigate lipid extraction in relation to interfacial behaviour and cell structure.

Results: High yields (>80%) of intracellular lipids were extracted from intact cells over the course of hours upon low-shear contacting with hexane. The cells associated with and stabilised the hexane-water interface, allowing hexane to infiltrate pores in the frustule component of the cell walls and access the intracellular lipids. It was shown that mucilaginous extracellular polymeric substances (EPS) bound to the cell walls acted as a barrier to solvent penetration into the cells. This EPS could be removed by prior ultrasonication. Biphasic extraction was greatly accelerated by shear applied by rotor-stator mixing or ultrasound. High-shear could remove mucilaginous EPS from the cell surfaces to facilitate direct contact of the cell surface with hexane and produced smaller emulsion droplets with increased surface area. The combination of high-shear in the presence of hexane resulted in the in-situ rupture of the cells, which greatly accelerated lipid extraction and allowed high yields of neutral lipid (>95%) to be recovered from freshly harvested cells within less than 5 min. The study demonstrated the ability of shear to enable simultaneous cell rupture and lipid extraction from a diatom alga based on its cell structure and interfacial behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.12.056DOI Listing

Publication Analysis

Top Keywords

lipid extraction
24
interfacial behaviour
12
cell structure
12
biphasic lipid
12
cell
10
behaviour cell
8
extraction
8
extraction diatom
8
cells
8
biphasic extraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!