Background: Timely drug resistance detection is essential to global tuberculosis management. Unfortunately, rapid molecular tests assess resistance to only a few drugs, with culture required for comprehensive susceptibility test results.
Methods: We evaluated targeted next generation sequencing (tNGS) for tuberculosis on 40 uncultured sputum samples. Resistance profiles from tNGS were compared with profiles from Xpert MTB/RIF, line probe assay (LPA), pyrosequencing (PSQ), and phenotypic testing. Concordance, sensitivity, specificity, and overall test agreement were compared across assays.
Results: tNGS provided results for 39 of 40 samples (97.5%) with faster turnaround than phenotypic testing (median 3 vs. 21 days, p = 0.0068). Most samples were isoniazid and rifampin resistant (N = 31, 79.5%), 21 (53.8%) were fluoroquinolone resistant, and 3 (7.7%) were also resistant to Kanamycin. Half were of the Beijing lineage (N = 20, 51.3%). tNGS from uncultured sputum identified all resistance to isoniazid, rifampin, fluoroquinolones, and second-line injectable drugs that was identified by other methods. Agreement between tNGS and existing assays was excellent for isoniazid, rifampin, and SLDs, very good for levofloxacin, and good for moxifloxacin.
Conclusion: tNGS can rapidly identify tuberculosis, lineage, and drug resistance with faster turnaround than phenotypic testing. tNGS is a potential alternative to phenotypic testing in high-burden settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tube.2021.102051 | DOI Listing |
J Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy.
Pathogenic variants are associated with neonatal epilepsies, ranging from self-limited neonatal epilepsy to -developmental and epileptic encephalopathy (DEE). In this study, next-generation sequencing was performed, applying a panel of 142 epilepsy genes on three unrelated individuals and affected family members, showing a wide variability in the epileptic spectrum. The genetic analysis revealed two likely pathogenic missense variants (c.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Internal Medicine, Division of Rheumatology, Mayo Clinic, Jacksonville, FL 32224, USA.
Pulmonary involvement is commonly observed in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), presenting with manifestations such as diffuse alveolar hemorrhage, inflammatory infiltrates, pulmonary nodules, and tracheobronchial disease. We aimed to identify distinct subgroups of tracheobronchial disease patterns in patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) using latent class analysis (LCA), and to evaluate their clinical characteristics and outcomes. We conducted a retrospective cohort study using electronic medical records of patients aged >18 years diagnosed with AAV and tracheobronchial disease between 1 January 2002 and 6 September 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!