AI Article Synopsis

  • The study aimed to assess early deterioration at the resin-dentin interface using non-invasive imaging techniques, specifically swept-source optical coherence tomography (SS-OCT) and confocal laser scanning microscopy (CLSM).
  • Researchers investigated the effects of self-etch adhesives and resin-composites, particularly focusing on bisphenol-glycidyl-dimethacrylate (Bis-GMA), on dentin in bovine incisors after exposure to cariogenic biofilm.
  • The results revealed three types of degradation visible through SS-OCT, and differences in gap scale and dentin wall lesion depth were found between Bis-GMA-containing and Bis-GMA-free materials, with Bis-GMA showing better preservation of structural integrity.

Article Abstract

Objective: To evaluate early degradation at resin-dentin interface using non-invasive swept-source optical coherence tomography (SS-OCT) and confocal laser scanning microscope (CLSM).

Methods: Self-etch adhesives and resin-composites containing bisphenol-glycidyl-dimethacrylate (Bis-GMA), which is one of the most widely used monomers in restorative materials, were investigated in this study. Forty cervical cavities were prepared in bovine incisors and applied by the adhesive with/without Bis-GMA (AdhesiveBG/Adhesive), filled by the resin with/without Bis-GMA (ResinBG/Resin) and then challenged by cariogenic biofilm (37 °C, 24 h). Gap Formation and dentin demineralization around resin-composites were observed by SS-OCT and CLSM.

Results: Three types of resin-dentin interfacial degradation could be detected from SS-OCT. Type I-dentin demineralization around resin without gap, showing feather-shaped dark zones without bright scattered lines at resin-dentin interfaces. Type II-dentin demineralization around resin with adhesive-dentin bonded gaps, showing feather-shaped dark zones with bright scattered lines at resin-dentin interfaces. Type III-dentin demineralization around resin with adhesive-dentin debonded gaps, showing edge-shaped dark zones with bright scattered lines at resin-dentin interface. From CLSM, the groups were compared in gap scale (GS), gap depth (GD), gap width (GW) and dentin wall lesion depth (WLD). Bis-GMA-containing adhesive groups showed significantly lower GS than Bis-GMA-free adhesive groups. Bis-GMA-containing resin groups showed significantly lower WLD than Bis-GMA-free resin groups. However, they did not show significant differences in GD and GW.

Conclusion: Three types of early degradation at resin-dentin interface can be noninvasively detected by SS-OCT. Bis-GMA-containing and Bis-GMA-free restorative materials show differences in gap scale and dentin wall lesion depth.

Clinical Significance: SS-OCT can nondestructively detect early resin-dentin interfacial degradation. Gap scale can be used as a parameter to evaluate the risk factor of gaps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2021.103583DOI Listing

Publication Analysis

Top Keywords

resin-dentin interface
16
early degradation
12
degradation resin-dentin
12
demineralization resin
12
dark zones
12
zones bright
12
bright scattered
12
scattered lines
12
lines resin-dentin
12
gap scale
12

Similar Publications

Background: Short dentin etching, a relatively recent technique, aims to improve resin-dentin bonding by preserving hydroxyapatite crystals within the collagen spaces. This study explores short dentin etching's potential in mitigating over-etching issues in deep proximal dentin/cementum margins, an aspect not previously investigated. This study evaluates the microtensile bond strength (μTBS) and marginal adaptation of two universal adhesives using different etch-and-rinse strategies (15-second and 3-second etching) and self-etch strategies, both immediate and post-thermal cycling and mechanical loading.

View Article and Find Full Text PDF

Effect of sulfinate salt on bonding and polymerization of adhesive to intracoronally bleached dentin.

Sci Rep

January 2025

Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.

To evaluate the effect of sulfinate salt on the bond performance of a two-step self-etch adhesive to an intracoronally bleached pulpal dentin surface. Intracoronally bleached bovine teeth were treated with or without sulfinate salt (sulfinate agent (SA): Clearfil DC activator) before 2-SEA (Clearfil SE Bond 2) application, while unbleached teeth served as the control (n = 5 teeth). Microtensile bond strength (µTBS) using the bonded surface area of 1 mm at the crosshead speed of 1 mm/min measurements after 24 h storage and thermocycles (TC), degree of conversion (DC) analyses by Raman spectroscopy (n = 3 teeth), ultrastructure of resin-dentin interface (n = 3 teeth), and intracoronally bleached pulp chamber dentin surface (n = 3 teeth) observations by scanning electron microscopy (SEM) were subsequently performed.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-induced collagen degradation at the resin-dentin interface remains a significant challenge for maintaining the longevity of dental restorations. This study investigated the effects of epigallocatechin-3-gallate (EGCG), a potent MMP inhibitor, on dental adhesive curing efficiency when encapsulated in halloysite nanotubes (HNTs). EGCG-loaded HNTs were incorporated into a commercial dental adhesive (Adper Scotchbond Multi-Purpose) at 7.

View Article and Find Full Text PDF

A Novel Dual Cross-linking Reagent for Dentin Bonding Interface Stability.

J Dent Res

December 2024

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.

The cross-linking reagent has been proposed as a means of modifying dentin collagen, inhibiting matrix metalloproteinase activities, and enhancing bond durability during dentin bonding procedures. This study aimed to synthesize an operation-friendly dual cross-linking reagent-3-(4-formyphenoxy)-2-hydroxypropyl methacrylate (FPA)-to assess its ability to cross-link dentin collagen and reduce enzymatic activity at the bonding interface. Cytotoxicity was evaluated by a cell counting kit-8 test and calcein AM/propidium iodide assay.

View Article and Find Full Text PDF

Nanoparticles Induced Biomimetic Remineralization of Acid-Etched Dentin.

J Dent (Shiraz)

December 2024

Dept. Conservative Dentistry and Endodontics, St.Joseph Dental College, Duggirala, Eluru, Andra Pradesh, India.

Statement Of The Problem: Dentin bonding with etch-and-rinse adhesives involves demineralizing the 5-8µm of the surface dentin to create micro space for resin infiltration. The presence of continuous fluid movement in dentin tubules and positive pulpal pressure prevents complete water replacement by resin monomers. This results in areas of demineralized dentin, which contain collagen fibers without resin infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!