Allosteric modulation of the cannabinoid 2 receptor confers seizure resistance in mice.

Neuropharmacology

Emory University, Department of Human Genetics, Atlanta, 30322, Georgia. Electronic address:

Published: May 2021

Mounting evidence suggests that modulation of cannabinoid 2 receptors (CB2Rs) is therapeutic in mouse models of neurological disorders, including neuropathic pain, neurodegenerative disease, and stroke. We previously showed that reducing CB2R activity increases seizure susceptibility in mice. In the present study, we evaluated the therapeutic potential of the CB2R positive allosteric modulator, Ec21a, against induced seizures in mice. The pharmacokinetic profile of Ec21 demonstrated a similar distribution in brain and plasma, with detection up to 12 h following injection. Ec21a increased resistance to induced seizures in CF1 wild-type mice and mice harboring the SCN1A R1648H human epilepsy mutation. A rotarod test provided evidence that Ec21a does not cause neurotoxicity-induced motor deficits at its therapeutic dose, and seizure protection was maintained with repeated drug administration. The selectivity of Ec21a for CB2R was supported by the ability of the CB2R antagonist AM630, but not the CB1R antagonist AM251, to block Ec21a-conferred seizure protection in mice, and a lack of significant binding of Ec21a to 34 brain-expressed receptors and transporters in vitro. These results identify allosteric modulation of CB2Rs as a promising therapeutic approach for the treatment of epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2021.108448DOI Listing

Publication Analysis

Top Keywords

allosteric modulation
8
modulation cannabinoid
8
induced seizures
8
seizure protection
8
mice
6
ec21a
5
cannabinoid receptor
4
receptor confers
4
seizure
4
confers seizure
4

Similar Publications

The human zinc-binding cysteine proteome.

Cell

December 2024

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address:

Zinc is an essential micronutrient that regulates a wide range of physiological processes, most often through zinc binding to protein cysteine residues. Despite being critical for modulation of protein function, the cysteine sites in the majority of the human proteome that are subject to zinc binding remain undefined. Here, we develop ZnCPT, a deep and quantitative mapping of the zinc-binding cysteine proteome.

View Article and Find Full Text PDF

The promise of cyclic AMP modulation to restore cognitive function in neurodevelopmental disorders.

Curr Opin Neurobiol

December 2024

Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA. Electronic address:

Cyclic AMP (cAMP) is a key regulator of synaptic function and is dysregulated in both neurodevelopmental (NDD) and neurodegenerative disorders. Due to the ease of diffusion and promiscuity of downstream effectors, cAMP signaling is restricted within spatiotemporal domains to localize activation. Among the best-studied mechanisms is the feedback inhibition of cAMP-dependent protein kinase (PKA) activity by phosphodiesterases 4 (PDE4s) at synapses controlling neuronal plasticity, which is largely regulated by PDE4D.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

IMPDH2 dephosphorylation under FGFR signaling promotes S-phase progression and tumor growth.

Cell Rep

December 2024

Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China. Electronic address:

Inosine monophosphate dehydrogenase 2 (IMPDH2) is highly expressed in human cancers; however, its physiological relevance under growth signaling remains to be investigated. Here, we show that IMPDH2 serine 122 is phosphorylated by CDK1, and this modification attenuates the catalytic activity of IMPDH2 for IMP oxidation and simultaneously represses its allosteric modulation by purine nucleotides. Fibroblast growth factor receptor (FGFR) signaling activation triggers IMPDH2-Ser122 dephosphorylation mediated by protein phosphatase 2A (PP2A), which is dependent on FGFR3-mediated PPP2R1A-Tyr261 phosphorylation leading to PPP2CA-PPP2R1A-IMPDH2 interactions.

View Article and Find Full Text PDF

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!