Anthracene-based fluorescent probe: Synthesis, characterization, aggregation-induced emission, mechanochromism, and sensing of nitroaromatics in aqueous media.

Environ Res

Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea. Electronic address:

Published: March 2021

The sensitive and selective detection of nitroexplosive molecules thorough a simple methodology has received a significant field of research affecting global security and public safety. In the present study, the synthesis of anthracene-based chalcone (S1) was conducted using a simple condensation method. S1 was found to exhibit unique properties, such as aggregation-induced emission in solution and mechanochromic behavior in solid state. A fluorescent aggregate was applied to sense electron-deficient picric acid (PA) and 2,4-dinitrophenol (2,4-DNP) in an aqueous solution. Notably, the developed test strip-based sensor (S1) could be used to effectively detect PA and 2,4-DNP, which were visualized by the naked eye. Photophysical analysis revealed the occurrence of an electron transfer from electron-rich S1 to the electron-deficient nitro compounds, which was confirmed using density functional theory and H-nuclear magnetic resonance studies. In addition, the observed results confirmed the simple synthesis of S1 as a promising material for the development of test strip-based sensor devices for the detection of toxic and explosive aromatic nitro molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.110741DOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
8
test strip-based
8
strip-based sensor
8
anthracene-based fluorescent
4
fluorescent probe
4
probe synthesis
4
synthesis characterization
4
characterization aggregation-induced
4
emission mechanochromism
4
mechanochromism sensing
4

Similar Publications

Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks.

J Colloid Interface Sci

January 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:

The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.

View Article and Find Full Text PDF

Carboxyl and carbonyl groups of carbon dots co-coordinated assembly with Al to emission-enhanced aggregates for sensitive sensing and efficient removal.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:

It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.

View Article and Find Full Text PDF

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!