Previous reports have shown that environmental temperature impacts proteome evolution in Bacteria and Archaea. However, it is unknown whether thermoadaptation mainly occurs via the sequential accumulation of substitutions, massive horizontal gene transfers, or both. Measuring the real contribution of amino acid substitution to thermoadaptation is challenging, because of confounding environmental and genetic factors (e.g., pH, salinity, genomic G + C content) that also affect proteome evolution. Here, using Methanococcales, a major archaeal lineage, as a study model, we show that optimal growth temperature is the major factor affecting variations in amino acid frequencies of proteomes. By combining phylogenomic and ancestral sequence reconstruction approaches, we disclose a sequential substitutional scheme in which lysine plays a central role by fine tuning the pool of arginine, serine, threonine, glutamine, and asparagine, whose frequencies are strongly correlated with optimal growth temperature. Finally, we show that colonization to new thermal niches is not associated with high amounts of horizontal gene transfers. Altogether, although the acquisition of a few key proteins through horizontal gene transfer may have favored thermoadaptation in Methanococcales, our findings support sequential amino acid substitutions as the main factor driving thermoadaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097290 | PMC |
http://dx.doi.org/10.1093/molbev/msaa312 | DOI Listing |
Waste Manag
January 2025
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China. Electronic address:
Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China.
View Article and Find Full Text PDFExtremophiles
January 2025
Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana, USA.
Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France.
Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.
View Article and Find Full Text PDFISME J
January 2025
Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain.
Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!