We measure ^{2}H(e,e^{'}p)n cross sections at 4-momentum transfers of Q^{2}=4.5±0.5  (GeV/c)^{2} over a range of neutron recoil momenta p_{r}, reaching up to ∼1.0  GeV/c. We obtain data at fixed neutron recoil angles θ_{nq}=35°, 45°, and 75° with respect to the 3-momentum transfer q[over →]. The new data agree well with previous data, which reached p_{r}∼500  MeV/c. At θ_{nq}=35° and 45°, final state interactions, meson exchange currents, and isobar currents are suppressed and the plane wave impulse approximation provides the dominant cross section contribution. We compare the new data to recent theoretical calculations, where we observe a significant discrepancy for recoil momenta p_{r}>700  MeV/c.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.262501DOI Listing

Publication Analysis

Top Keywords

neutron recoil
8
recoil momenta
8
θ_{nq}=35° 45°
8
probing deuteron
4
deuteron large
4
large internal
4
internal momenta
4
momenta measure
4
measure ^{2}hee^{'}pn
4
^{2}hee^{'}pn cross
4

Similar Publications

In this work, the properties of LiF crystals grown using Li of different isotopic compositions are described from the standpoint of their application as fluorescent nuclear track detectors used in measurements in the neutron radiation fields. The crystals were grown using two techniques: the Czochralski method and the micro-pulling-down method. Three isotopic compositions of Li were studied: natural, highly enriched in Li, and highly enriched in Li.

View Article and Find Full Text PDF

Measurement of neutron spectra in spent fuel storage.

Appl Radiat Isot

December 2024

Department of Neutron Physics, Research Centre Řež, Hlavní 130, 250 68, Řež, Czech Republic. Electronic address:

The neutron spectrum was measured at two locations in the spent fuel storage facility of the Temelín nuclear power plant. The measurement had two primary objectives: to map the neutron -γ field by quantifying the ambient dose equivalent H∗(10) and to identify methods that could improve the quality of the adjusted neutron spectrum using a Bonner Sphere Spectrometer (BSS). Three spectrometers were used: a BSS and two proton recoil spectrometers.

View Article and Find Full Text PDF

Neutron measurement is the primary tool in the SPARC tokamak for fusion power (Pfus) monitoring, research on the physics of burning plasmas, validation of the neutronics simulation workflows, and providing feedback for machine protection. A demanding target uncertainty (10% for Pfus) and coverage of a wide dynamic range (>8 orders of magnitude going up to 5 × 1019 n/s), coupled with a fast-track timeline for design and deployment, make the development of the SPARC neutron diagnostics challenging. Four subsystems are under design that exploit the high flux of direct DT and DD plasma neutrons emanating from a shielded opening in a midplane diagnostic port.

View Article and Find Full Text PDF

A magnetic proton recoil (MPR) neutron spectrometer is being designed for SPARC, a high magnetic field (BT = 12 T), compact (R0 = 1.85 m, a = 0.57 m) tokamak currently under construction in Devens, MA, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!