Osteogenic Effect of a Biodegradable BMP-2 Hydrogel Injected into a Cannulated Mg Screw.

ACS Biomater Sci Eng

Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.

Published: November 2020

Cannulated screws, containing an internal hole for inserting a guide pin, are commonly used in the management of bone fractures. Cannulated Mg screws can be biodegraded easily because their increased surface area including that of the inner hole rapidly reacts with body fluids. To delay biodegradation of cannulated Mg screws and improve bone regeneration, we developed a specific type of screw by injecting it with gelatin hydrogels [10 wt % gelatin with 0.09 v/v % glutaraldehyde (cross-linker)] containing different concentrations (5, 10, or 25 μg/mL) of bone morphogenic proteins (BMPs). We analyzed the properties and biocompatibility of the screws with and without BMP-2 and found that the release rate of BMP-2 in the hydrogel changed proportionately with the degradation rate of the cross-linked hydrogel. Loading BMP-2 in the hydrogel resulted in sustained release of BMP-2 for 25 to 40 days or more. The degradation rate of BMP-2 hydrogels was inversely proportional to the concentration of BMP-2. The injection of the hydrogels in the cannulated screw delayed biodegradation inside of the screw by simulated body fluid. It also induced uniform corrosion and the precipitation of bioactive compounds onto the surface of the screw. In addition, osteoblast proliferation was very active near the BMP-2 hydrogels, depending on the BMP-2 concentration. The BMP-2 in the hydrogel improved cell differentiation. The cannulated screw injected with 10 μL/mL BMP-2 hydrogel prevented implant biodegradation and enhanced osteoconduction and osteointegration inside and outside the screw. In addition, the properties of BMP-2-loaded hydrogels can be changed by controlling the amount of the cross-linker and protein, which could be useful for tissue regeneration in other fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.0c00709DOI Listing

Publication Analysis

Top Keywords

bmp-2 hydrogel
20
cannulated screw
12
cannulated screws
12
bmp-2
11
rate bmp-2
8
degradation rate
8
bmp-2 hydrogels
8
concentration bmp-2
8
inside screw
8
screw addition
8

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

This study aimed to investigate the impact of varying the formulation of a specific peptide hydrogel (PepGel) on the release kinetics of rhBMP-2 in vitro. Three PepGel formulations were assessed: (1) 50% / (peptides volume/total volume) PepGel, where synthetic peptides were mixed with crosslinking reagents and rhBMP-2 solution; (2) 67% / PepGel; (3) 80% / PepGel. Each sample was loaded with 12 µg of rhBMP-2 and incubated in PBS.

View Article and Find Full Text PDF

The selective androgen receptor modulator (SARM), YK11, promotes the anabolism of muscle cells and osteoblastic precursor cells. Still, its effects on bone marrow-derived mesenchymal stem cells (BMSCs) and the repair of cranial bone defects are unknown. Here, the effects of different concentrations of YK11 on the osteogenic differentiation of BMSCs were determined.

View Article and Find Full Text PDF

Dendrigrafts are multivalent macromolecules with less ordered topology and higher branching than dendrimers. Exhibiting a high density of terminal amines, poly-L-lysine dendrigrafts of the fifth generation (DGL G5) allow hydrogel formation with tailorable crosslinking density and surface modification. This work presents DGL G5 as multifunctional crosslinkers in biomimetic PEG hydrogels to favour the osteogenic differentiation of human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

An injectable carboxymethyl chitosan-based hydrogel with controlled release of BMP-2 for efficient treatment of bone defects.

Int J Biol Macromol

December 2024

The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Shenzhen University General Hospital, Shenzhen 518055, China. Electronic address:

Although biological scaffolds containing bone morphogenetic protein-2 (BMP-2) have been widely used for osteogenic therapy, achieving stable and controlled release of BMP-2 remains a challenge. Herein, a novel BMP-2 sustained-release system composed of carboxymethyl chitosan (CMCS)/polyethylene glycol (PEG)/heparin sulfate (HS) (CMCS/PEG/HS) was constructed with a Schiff base reaction, yielding an injectable hydrogel for the release of BMP-2 in a controlled manner. For the CMCS/PEG/HS/BMP-2 hydrogel, the HS component had a negatively charged structure, which can bind to positively charged growth factors and prevent early hydrolytic metabolism of growth factors, thus achieving sustainable release of BMP-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!