Background: This work evaluated the performances of protein-based bioplastics obtained from black soldier fly (Hermetia illucens) prepupae. Protein films were synthesized by film casting, using both the whole proteins and their soluble fraction at pH = 10. The effects of glycerol as a plasticizer and of citric acid as a mild crosslinker on film properties were also evaluated.
Results: Films obtained using the soluble protein fraction were the strongest, as well as the most homogeneous and transparent ones. Protein mild crosslinking improved film tensile properties, especially in films obtained with the whole protein fraction. Non-crosslinked samples had a high affinity with water while crosslinking almost eliminated the ability of films to absorb water. All protein-based films proved to be effective barriers to red light (transmittance less than 2%).
Conclusions: Bioplastics derived from black soldier fly prepupae may find applications in the agricultural sector (biodegradable pots, mulching films, utensils) and deserve to be tested for food and non-food packaging. © 2021 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.11091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!