Introduction: Chagas disease (CD) is a global health concern with approximately 12 000 deaths per year worldwide. In the chronic phase, about 30% of patients develop the cardiac clinical form, which presents symptoms associated with the presence of inflammatory cells in the cardiac tissue. Neutrophils are inflammatory cells able to modulate the chronic immune response against pathogens. These cells are capable of interacting with Trypanosoma cruzi, the aetiological agent of CD, and perform several effector functions, such as NET release. However, few studies have been carried out to investigate the role of these cells in the disease.
Aims: To investigate the release of NETs by neutrophils from CD patients by measuring the amount of DNA and elastase released.
Methods And Results: Measurement of DNA release by neutrophils from chronic CD patients presenting the indeterminate (IND group; n = 18) and cardiac (CARD group; n = 15) clinical forms and nonchagasic subjects (n = 18) stimulated with soluble antigen of T. cruzi was quantified using the Quant-iT™ PicoGreen dsDNA assay kit. Patients from CARD group release less DNA (117.3 ± 21.85 ng/mL; *P = .0131) than neutrophils from control (177.7 ± 58.41 ng/mL). Elastase enzyme degranulation was measured using the substrate N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide (SAAVNA). Absorbance values of elastase degranulation activity showed that only cells from healthy individuals presented a high release profile of elastase. Also, we found a negative correlation between DNA released concentration and risk of death (r = -.6574; *P = .0173); the lower the neutrophil DNA release from chagasic patients with cardiac event, the higher the risk of death.
Conclusion: These preliminary data show that patients with the cardiac form of CD release less NETs than nonchagasic individuals, raising the possibility that lower release of NETs enhances risk of death in CD patients with cardiac events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pim.12821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!