Background: Respiratory motion can diminish PET image quality and lead to inaccurate lesion quantifications. Data-driven gating (DDG) was recently introduced as an effective respiratory gating technique for PET. In the current study, we investigated the clinical impact of DDG on respiratory movement in F-FDG PET/CT.

Method: PET list-mode data were collected for each subject and DDG software was utilized for extracting respiratory waveforms. PET images was reconstructed using Q.clear and Q.clear + DDG, respectively. We evaluated SUVmax, SUVmean, the coefficient of variance (CoV), metabolic tumor volume (MTV), and tumor heterogeneity using the area under the curve of cumulative SUV histogram (AUC-CSH). Metabolic parameter changes were compared between each reconstruction method. The Deep-Expiration Breath Hold (DEBH) protocol was introduced for CT scans to correct spatial misalignment between PET and CT and compared with conventional free breathing. The DEBH and free breathing (FB) protocol comparison was made in a separate matching cohort using propensity core matching rather than the same patient.

Results: Total 147 PET/CT scans with excessive respiratory movements were used to study DDG-mediated correction. After DDG application, SUVmax (P < 0.0001; 8.15 ± 4.77 vs. 9.03 ± 5.02) and SUVmean (P < 0.0001; 4.91 ± 2.44 vs. 5.49 ± 2.68) of lung and upper abdomen lesions increased, while MTV significantly decreased (P < 0.0001; 7.07 ± 15.46 vs. 6.58 ± 15.14). In addition, the percent change of SUVs was greater in lower lung lesions compared to upper lobe lesions. Likewise, the MTV reduction was significantly greater in lower lobe lesions. No significant difference dependent on location was observed in liver lesions. DEBH-mediated CT breathing correction did not make a significant difference in lesion metabolic parameters compared to conventional free breathing.

Conclusions: These results suggest that DDG correction enables more corrected quantification from respiratory movements for lesions located in the lung and upper abdomen. Therefore, we suggest that DDG is worth using as a standard protocol during F-FDG PET/CT imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12149-020-01574-4DOI Listing

Publication Analysis

Top Keywords

free breathing
12
respiratory gating
8
respiratory
6
pet
5
impact data-driven
4
data-driven respiratory
4
gating clinical
4
clinical f-18
4
f-18 fdg
4
fdg pet/ct
4

Similar Publications

Objective: This study aims to evaluate the efficacy of two free-breathing magnetic resonance imaging (MRI) sequences-spiral ultrashort echo time (spiral UTE) and radial volumetric interpolated breath-hold examination (radial VIBE).

Methods: Patients were prospectively enrolled between February 2021 and September 2022. All participants underwent both 3T MRI scanning, utilizing the radial VIBE sequence and spiral UTE sequence, as well as standard chest CT imaging.

View Article and Find Full Text PDF

Background: The personalized, free-breathing, heart rate-dependent computed tomography angiography (CTA) protocol can significantly reduce the utilization of contrast medium (CM). This proves especially beneficial for patients with chronic obstructive pulmonary disease (COPD) undergoing coronary artery CTA examinations.

Objective: The aim of this study was to evaluate the feasibility of a personalized CT scanning protocol that was tailored to patients' heart rate and free-breathing for coronary CTA of patients with COPD.

View Article and Find Full Text PDF

Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.

View Article and Find Full Text PDF

Third trimester fetal 4D flow MRI with motion correction.

Magn Reson Med

January 2025

Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Purpose: To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.

Methods: A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work.

View Article and Find Full Text PDF

Formation of I+III supercomplex rescues respiratory chain defects.

Cell Metab

January 2025

Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore. Electronic address:

Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I+III, resolved at 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!