Magnetic drug delivery known as smart technique in medicine is basically according to combining the drug inside capsules with the magnetic property or attaching the drug with magnetic surfaces at the micro- and nanoscale. In the present study, magnetic drug delivery in the aortic artery has been investigated. To approach the more realistic problem conditions of blood flow rheology, the effect of parameters such as non-Newtonian viscosity and oscillating input has been put into consideration. Also, the investigated geometrical parameters of arteries of the aortic arch have been chosen similar to the real size. The results indicate that an increase in the diameter of microparticles rises the efficiency of particles absorption. In addition, the influence of changing the direction of the wire carrying electricity and thus changing the direction of magnetic field on magnetic drug delivery has been examined in the geometry of the aortic arc and it is found that the highest particle absorption efficiency takes place in the case that the wire is parallel to the direction of y-axis. As an example, the results show that the rate of absorption efficiency for particles with 3 µm dia is 26.83% and 19.39% when the wire generating magnetic field is parallel to the direction of y-axis and z-axis, respectively, and this value is 10.91% for the case without a magnetic field. The number of particles released from different part of the aortic arch also is affected by the direction of magnetic field. This value illustrates that the percentage of particles released from different states, is equal when the magnetic field is absent and the wire carrying electricity is parallel to y-axis and z-axis. However, the number of particles released from the 2 outputs of the left carotid and left subclavian is less than the other 2 states (i.e., the state when there is not a magnetic field, and the state when the electric current direction is parallel to the y-axis direction) for the state when the wire carrying current is parallel to the z-axis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-020-01416-2DOI Listing

Publication Analysis

Top Keywords

magnetic field
28
drug delivery
16
aortic arch
12
magnetic
12
magnetic drug
12
wire carrying
12
particles released
12
field magnetic
8
efficiency particles
8
changing direction
8

Similar Publications

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

The sharing of multimodal magnetic resonance imaging (MRI) data is of utmost importance in the field, as it enables a deeper understanding of facial nerve-related pathologies. However, there is a significant lack of multi-modal neuroimaging databases specifically focused on these conditions, which hampers our comprehensive knowledge of the neural foundations of facial paralysis. To address this critical gap and propel advancements in this area, we have released the Multimodal Neuroimaging Dataset of Meige Syndrome, Facial Paralysis, and Healthy Controls (MND-MFHC).

View Article and Find Full Text PDF

Understanding the ligand field interactions in lanthanide-containing magnetic molecular complexes is of paramount importance for understanding their magnetic properties, and simple models for rationalizing their effects are much desired. In this work, the equivalence between electrostatic models, which derive their results from calculating the electrostatic interaction energy of the charge density of the 4f electrons in an electrostatic potential representing the ligands, and the common quantum mechanical effective spin Hamiltonian in the space of the ground multiplet is formulated in detail. This enables the construction of an electrostatic potential for any given ligand field Hamiltonian and discusses the effects of the ligand field interactions in terms of an interaction of a generalized 4f charge density with the electrostatic potential.

View Article and Find Full Text PDF

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Heart remodelling affects ECG in rat DOCA/salt model.

Physiol Res

December 2024

Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!