Fluorescent carbon nanoparticles exhibit merits in terms of photochemical stability, functional modification flexibility and excellent biocompatibility. Currently, fluorescent carbon nanoparticles are often obtained by bottom-up or up-bottom strategies. So far, there has been no literature concerning spontaneous formation of fluorescent carbon nanoparticles. However, we have successfully found that fluorescent carbon nanoparticles can form spontaneously in the glutaraldehyde solution. Then further investigations were conducted on the storage time, pH and temperature, which could affect the fluorescence intensity of glutaraldehyde solution. The results indicate that the value of the fluorescence intensity will increase with the extension of the storage time. Moreover, the fluorescence mechanism of the glutaraldehyde solution was studied according to its properties and experiment results. Transmission electron microscopy was used to demonstrate nanoparticles in the glutaraldehyde solution. It's assumed that such phenomenon is probably attributed to the conjugated structure resulting from the polymerization of glutaraldehyde and the quantum confinement effect owing to the nanoparticles formed by the aggregation of polymers. Therefore, the spontaneous fluorescence produced by glutaraldehyde solution provides a simple and environmentally-friendly way to prepare fluorescent carbon nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-020-02678-w | DOI Listing |
Heliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India.
Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.
View Article and Find Full Text PDFChem Asian J
January 2025
University of Macau, Institute of Applied Physics and Materials Engineering, MACAO.
In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!